Skip to main content

Advertisement

Log in

Bisphosphonate of Zoledronate Has Antiapoptotic Effect on Hypoxia/Reoxygenation Injury in Human Embryonic Stem Cell-Derived Cardiomyocytes Through Trk Signaling Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In this work, we investigated the in vitro and in vivo functions of bisphosphonate of zoledronate (Zd) in hypoxia/reoxygenation (H/R) injured human embryonic stem cell-derived cardiomyocytes (hES-CMs). In the in vitro setting, the effects of Zd on hES-CM survival and differentiation were examined. We found that low and medium concentrations (<2 µm) of Zd did not induce cell death of hES-CMs. 0.5 µm Zd protected H/R-induced hES-CM apoptosis but did not affect key differentiation proteins, including hcTnl, PECM-1 Cnx43 and Pan-Cadherin. In addition, Zd-induced TrkA/B phosphorylation and promoted VEGF to counter the apoptotic effect of H/R injury. In the in vivo animal model of myocardial infarction, Zd treatment promoted the survival of hES-CMs by inducing PECAM1 and hcTnl. Thus, we concluded that Zd protected H/R-induced hES-CM apoptosis in vitro and promoted hES-CM survival in vivo. These data may facilitate the development of human embryonic stem cells into clinical applications for patients with ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Original data were available upon request.

References

  1. Heusch, G., Libby, P., Gersh, B., Yellon, D., Bohm, M., Lopaschuk, G., & Opie, L. (2014). Cardiovascular remodelling in coronary artery disease and heart failure. Lancet, 383(9932), 1933–1943.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lippi, G., Franchini, M. & & Cervellin, G. (2013). Diagnosis and management of ischemic heart disease. Seminars in Thrombosis and Hemostasis, 39(2), 202–213.

    Article  CAS  PubMed  Google Scholar 

  3. Boateng, S., & Sanborn, T. (2013). Acute myocardial infarction. Disease-A-Month, 59(3), 83–96.

    Article  PubMed  Google Scholar 

  4. Welch, T. D., Yang, E. H., Reeder, G. S. & & Gersh, B. J. (2012). Modern management of acute myocardial infarction. Current Problems in Cardiology, 37(7), 237–310.

    Article  PubMed  Google Scholar 

  5. Minicucci, M. F., Azevedo, P. S., Polegato, B. F., Paiva, S. A., & Zornoff, L. A. (2011). Heart failure after myocardial infarction: clinical implications and treatment. Clinical Cardiology, 34(7), 410–414.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Widgerow, A. D. (2014). Ischemia-reperfusion injury: influencing the microcirculatory and cellular environment. Annals of Plastic Surgery, 72(2), 253–260.

    Article  CAS  PubMed  Google Scholar 

  7. Hausenloy, D. J., & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: a neglected therapeutic target. Journal of Clin Investigation, 123(1), 92–100.

    Article  CAS  Google Scholar 

  8. Kennedy-Lydon, T., & Rosenthal, N. (2015). Cardiac regeneration: epicardial mediated repair. Proceedings of the Royal Society B: Biological Sciences, 282(1821), 20152147.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mehta, A., & Shim, W. (2013). Cardiac stem cell therapy: stemness or commitment? Cell Transplantation, 22(1), 1–14.

    Article  PubMed  Google Scholar 

  10. Young, P. P., & Schafer, R. (2015). Cell-based therapies for cardiac disease: a cellular therapist’s perspective. Transfusion, 55(2), 441–451. quiz 440.

    Article  PubMed  Google Scholar 

  11. Beqqali, A., van Eldik, W., Mummery, C. & & Passier, R. (2009). Human stem cells as a model for cardiac differentiation and disease. Cellular and Molecular Life Sciences, 66(5), 800–813.

    Article  CAS  PubMed  Google Scholar 

  12. Nir, S. G., David, R., Zaruba, M., Franz, W. M., & Itskovitz-Eldor, J. (2003). Human embryonic stem cells for cardiovascular repair. Cardiovascular Research, 58(2), 313–323.

    Article  CAS  PubMed  Google Scholar 

  13. Acimovic, I., Vilotic, A., Pesl, M., Lacampagne, A., Dvorak, P., Rotrekl, V., & Meli, A. C. (2014). Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools. Biomedical Research International, 2014, 512831.

    Article  Google Scholar 

  14. Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., Reinecke, H., Xu, C., Hassanipour, M., & Police, S., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  15. Terrovitis, J. V., Smith, R. R., & Marban, E. (2010). Assessment and optimization of cell engraftment after transplantation into the heart. Circulation Research, 106(3), 479–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., Yankelson, L., Aronson, D., Beyar, R., & Gepstein, L. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of American College of Cardiology, 50(19), 1884–1893.

    Article  Google Scholar 

  17. Henning, R. J. (2011). Stem cells in cardiac repair. Future Cardiology, 7(1), 99–117.

    Article  PubMed  Google Scholar 

  18. Bock, O., & Felsenberg, D. (2008). Bisphosphonates in the management of postmenopausal osteoporosis–optimizing efficacy in clinical practice. Clinical Interventions in Aging, 3(2), 279–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coleman, R. E. (2004). Bisphosphonates: clinical experience. Oncologist, 9(Suppl 4), 14–27.

    Article  CAS  PubMed  Google Scholar 

  20. Hughes, D. E., Wright, K. R., Uy, H. L., Sasaki, A., Yoneda, T., Roodman, G. D., Mundy, G. R., & Boyce, B. F. (1995). Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. Journal of Bone Mineral Research, 10(10), 1478–1487.

    Article  CAS  PubMed  Google Scholar 

  21. Fleisch, H. (1989). Bisphosphonates: a new class of drugs in diseases of bone and calcium metabolism. Recent Results in Cancer Research, 116, 1–28.

    Article  CAS  PubMed  Google Scholar 

  22. Watts, N. B. & & Diab, D. L. (2010). Long-term use of bisphosphonates in osteoporosis. The Journal of Clinical Endocrinology and Metabolism, 95(4), 1555–1565.

    Article  CAS  PubMed  Google Scholar 

  23. Tsai, S. H., Huang, P. H., Chang, W. C., Tsai, H. Y., Lin, C. P., Leu, H. B., Wu, T. C., Chen, J. W., & Lin, S. J. (2012). Zoledronate inhibits ischemia-induced neovascularization by impairing the mobilization and function of endothelial progenitor cells. PLoS One, 7(7), e41065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seist, R., Tong, M., Landegger, L. D., Vasilijic, S., Hyakusoku, H., Katsumi, S., McKenna, C. E., Edge, A. S. B., & Stankovic, K. M. (2020). Regeneration of cochlear synapses by systemic administration of a bisphosphonate. Frontiers in Molecular Neuroscience, 13, 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guide for the Care and Use of Laboratory Animals. edn. Washington (DC); 1996.

  26. Zhu, W. Z., Van Biber, B., & Laflamme, M. A. (2011). Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells. Methods in Molecular Biology, 767, 419–431.

    Article  CAS  PubMed  Google Scholar 

  27. Hsieh, A., Feric, N. T., & Radisic, M. (2015). Combined hypoxia and sodium nitrite pretreatment for cardiomyocyte protection in vitro. Biotechnology Progess, 31(2), 482–492.

    Article  CAS  Google Scholar 

  28. Luo, J., Weaver, M. S., Cao, B., Dennis, J. E., Van Biber, B., Laflamme, M. A., & Allen, M. D. (2014). Cobalt protoporphyrin pretreatment protects human embryonic stem cell-derived cardiomyocytes from hypoxia/reoxygenation injury in vitro and increases graft size and vascularization in vivo. Stem Cells Translational Medicine, 3(6), 734–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, H. C., Zhang, H. F., Guo, W. Y., Su, H., Zhang, K. R., Li, Q. X., Yan, W., Ma, X. L., Lopez, B. L., & Christopher, T. A., et al. (2006). Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis, 11(8), 1453–1460.

    Article  CAS  PubMed  Google Scholar 

  30. Cai, J., Yi, F. F., Yang, X. C., Lin, G. S., Jiang, H., Wang, T., & Xia, Z. (2007). Transplantation of embryonic stem cell-derived cardiomyocytes improves cardiac function in infarcted rat hearts. Cytotherapy, 9(3), 283–291.

    Article  CAS  PubMed  Google Scholar 

  31. Huwer, H., Winning, J., Vollmar, B., Welter, C., Lohbach, C., Menger, M. D., & Schafers, H. J. (2003). Long-term cell survival and hemodynamic improvements after neonatal cardiomyocyte and satellite cell transplantation into healed myocardial cryoinfarcted lesions in rats. Cell Transplantation, 12(7), 757–767.

    Article  PubMed  Google Scholar 

  32. Fazmin, IT, Huang, CL, Jeevaratnam, K. Bisphosphonates and atrial fibrillation: revisiting the controversy. Annals of the New York Academy of Sciences, 2020.

  33. Loke, Y. K., Jeevanantham, V., & Singh, S. (2009). Bisphosphonates and atrial fibrillation: systematic review and meta-analysis. Drug Safety, 32(3), 219–228.

    Article  CAS  PubMed  Google Scholar 

  34. Arslan, C., Aksoy, S., Dizdar, O., Dede, D. S., Harputluoglu, H., & Altundag, K. (2011). Zoledronic acid and atrial fibrillation in cancer patients. Support Care Cancer, 19(3), 425–430.

    Article  PubMed  Google Scholar 

  35. Ilgezdi, Z. D., Aktas, I., Dogan Metin, F., Kepez, A., Unlu Ozkan, F., Silte, A. D., Yilmaz Kaysin, M., Kivrak, T., Cincin, A., & Erdogan, O. (2015). Acute effect of zoledronic acid infusion on atrial fibrillation development in patients with osteoporosis. The Anatolian Journal of Cardiology, 15(4), 320–324.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Z., Wang, S. P., Shao, Q., Li, P. F., Sun, Y., Luo, L. Z., Yan, X. Q., Fan, Z. Y., Hu, J. & & Zhao, J. et al. (2019). Brain-derived neurotrophic factor mimetic, 7,8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Free Radical Biology and Medicine, 145, 187–197.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LX; Methodology: LX Validation: LX; Formal analysis and investigation: HW, WZ; Writing—original draft preparation: HW; Writing—review and editing: LX; Resources: LX, Supervision: LX.

Corresponding author

Correspondence to Lin Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhao, WS. & Xu, L. Bisphosphonate of Zoledronate Has Antiapoptotic Effect on Hypoxia/Reoxygenation Injury in Human Embryonic Stem Cell-Derived Cardiomyocytes Through Trk Signaling Pathway. Cell Biochem Biophys 80, 435–442 (2022). https://doi.org/10.1007/s12013-021-01031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01031-7

Keywords

Navigation