Skip to main content

Advertisement

Log in

Preparation and Characterization of Bioadhesive Monoolein Cubosomes as Carriers for Captopril

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Captopril is one of the most important angiotensin converting enzyme inhibitors and still the gold standard for the treatment of hypertension and congestive heart failure. However, it has a short duration of action and about 1–2 h biological half-life. Formulation of a sustained release dosage form of captopril is difficult due to its instability at the alkaline pH of the gastrointestinal tract. Therefore, incorporation of captopril within bioadhesive cubic nanoparticles or cubosomes could be an alternative way to improve its efficiency.

Methods

Monoolein dispersions containing captopril were prepared by the homogenization technique using different concentrations of monoolein and poloxamer. Characterization of these dispersions was performed by measuring particle size, small angle X-ray diffraction, cryo transmission electron microscopy, entrapment efficiency, and in-vitro release of captopril.

Results

Monoolein cubic nanoparticles with mean particle sizes between 250 and 350 nm were obtained after autoclaving the homogenized dispersions. The cubic structure was confirmed by the presence of the three characteristic X-ray diffraction peaks of P-type cubic phase and from cryo transmission pictures. A slow release of captopril from cubosomes was observed within 8 h with a high bioadhesion capacity where about 75% of these cubosomes adhered to stomach tissues.

Conclusion

Monoolein cubosomes could be used successfully as carriers for captopril where they slowly released it and had a good adhesion property to stomach tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nur AO, Zhang JS. Captopril floating and/or bioadhesive tablets: design and release kinetics. Drug Dev Ind Pharm. 2000;26(9):965–9.

    Article  CAS  PubMed  Google Scholar 

  2. Schoenberger JA, Testa M, Ross AD, Brennan WK, Bannon JA. Efficacy, safety, and quality-of-life assessment of captopril antihypertensive therapy in clinical practice. Arch Intern Med. 1990;150(2):301–6.

    Article  CAS  PubMed  Google Scholar 

  3. Creasey WA, Morrison RA, Singhvi SM, Willard DA. Pharmacokinetics of intravenous captopril in healthy men. Eur J Clin Pharmacol. 1988;35(4):367–70.

    Article  CAS  PubMed  Google Scholar 

  4. Kayanakis JG, Baulac L. Comparative study of once-daily administration of captopril 50 mg, hydrochlorothiazide 25 mg and their combination in mild to moderate hypertension. Br J Clin Pharmacol. 1987;23(Suppl 1):89S-92S.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guo JH, Cooklock KM. The effects of backing materials and multilayered systems on the characteristics of bioadhesive buccal patches. J Pharm Pharmacol. 1996;48(3):255–7.

    Article  CAS  PubMed  Google Scholar 

  6. Jones DS, Woolfson AD, Djokic J, Coulter WA. Development and mechanical characterization of bioadhesive semi-solid, polymeric systems containing tetracycline for the treatment of periodontal diseases. Pharm Res. 1996;13(11):1734–8.

    Article  CAS  PubMed  Google Scholar 

  7. Ponchel G, Irache J. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv Drug Deliv Rev. 1998;34(2–3):191–219.

    Article  CAS  PubMed  Google Scholar 

  8. Soane RJ, Frier M, Perkins AC, Jones NS, Davis SS, Illum L. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm. 1999;178(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  9. Sankar C, Rani M, Srivastava AK, Mishra B. Chitosan based pentazocine microspheres for intranasal systemic delivery: development and biopharmaceutical evaluation. Pharmazie. 2001;56(3):223–6.

    CAS  PubMed  Google Scholar 

  10. Chien YW. New developments in drug delivery systems. Med Res Rev. 1990;10(4):477–504.

    Article  CAS  PubMed  Google Scholar 

  11. Govender S, Pillay V, Chetty DJ, Essack SY, Dangor CM, Govender T. Optimisation and characterisation of bioadhesive controlled release tetracycline microspheres. Int J Pharm. 2005;306(1–2):24–40.

    Article  CAS  PubMed  Google Scholar 

  12. Huang JL, Lu JF. In vitro drug release profiles and mucoadhesive property of bioadhesive microspheres of metronidazole. Yao Xue Xue Bao. 2002;37(3):226–8.

    CAS  PubMed  Google Scholar 

  13. Illum L, Fisher AN, Jabbal-Gill I, Davis SS. Bioadhesive starch microspheres and absorption enhancing agents act synergistically to enhance the nasal absorption of polypeptides. Int J Pharm. 2001;222(1):109–19.

    Article  CAS  PubMed  Google Scholar 

  14. Jha RK, Tiwari S, Mishra B. Bioadhesive microspheres for bioavailability enhancement of raloxifene hydrochloride: formulation and pharmacokinetic evaluation. AAPS PharmSciTech. 2011;12(2):650–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramdas M, Dileep KJ, Anitha Y, Paul W, Sharma CP. Alginate encapsulated bioadhesive chitosan microspheres for intestinal drug delivery. J Biomater Appl. 1999;13(4):290–6.

    Article  CAS  PubMed  Google Scholar 

  16. Shimoda J, Onishi H, Machida Y. Bioadhesive characteristics of chitosan microspheres to the mucosa of rat small intestine. Drug Dev Ind Pharm. 2001;27(6):567–76.

    Article  CAS  PubMed  Google Scholar 

  17. Upadhyay MS, Pathak K. Glyceryl monooleate-coated bioadhesive hollow microspheres of riboflavin for improved gastroretentivity: optimization and pharmacokinetics. Drug Deliv Transl Res. 2013;3(3):209–23.

    Article  CAS  PubMed  Google Scholar 

  18. Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm. 2003;255(1–2):13–32.

    Article  CAS  PubMed  Google Scholar 

  19. Vyas SP, Jain CP. Bioadhesive polymer-grafted starch microspheres bearing isosorbide dinitrate for buccal administration. J Microencapsul. 1992;9(4):457–64.

    Article  CAS  PubMed  Google Scholar 

  20. Lai J, Chen J, Lu Y, Sun J, Hu F, Yin Z, et al. Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS PharmSciTech. 2009;10(3):960–6.

  21. Sagalowicz L, Leser ME, Watzke HJ, Michel M. Monoglyceride self-assembly structures as delivery vehicles. Trends Food Sci Technol. 2006;17(5):204–14.

    Article  CAS  Google Scholar 

  22. Wyatt DM, Dorschel D. A cubic-phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs. Pharm Technol. 1992;16:116–30.

    CAS  Google Scholar 

  23. Yang D, Armitage B, Marder SR. Cubic liquid-crystalline nanoparticles. Angew Chem Int Ed. 2004;43(34):4402–9.

    Article  CAS  PubMed  Google Scholar 

  24. Drummond CJ, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci. 1999;4(6):449–56.

    Article  CAS  Google Scholar 

  25. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. Cubic lipid-water phase dispersed into submicron particles. Langmuir. 1996;12(20):4611–3.

    Article  CAS  Google Scholar 

  26. Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir. 2001;17(19):5748–56.

    Article  CAS  Google Scholar 

  27. Nielsen LS, Schubert L, Hansen J. Bioadhesive drug delivery systems. I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci. 1998;6(3):231–9.

  28. Dawoud M, Abdou R. Ion exchange column technique as a novel method for evaluating the release of docetaxel from different lipid nanoparticles. Drug Deliv Transl Res. 2021.

  29. D'Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res. 2006;23(3):460–74.

  30. Shabbits JA, Chiu GNC, Mayer LD. Development of an in vitro drug release assay that accurately predicts in vivo drug retention for liposome-based delivery systems. J Control Release. 2002;84(3):161–70.

    Article  CAS  PubMed  Google Scholar 

  31. Washington C. Evaluation of non-sink dialysis methods for the measurement of drug release from colloids - effects of drug partition. Int J Pharm. 1989;56(1):71–4.

    Article  CAS  Google Scholar 

  32. Washington C. Drug release from microdisperse systems: a critical review. Int J Pharm. 1990;58(1):1–12.

    Article  CAS  Google Scholar 

  33. Washington C. Drug release from microparticulate systems. In: Drugs and Pharmaceutical Sciences. (Microencapsulation-Methods and Industrial Application) B, S., Ed., Marcel, D., New York,, editor. 1996;73.

  34. Barauskas J, Johnsson M, Johnson F, Tiberg F. Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability. Langmuir. 2005;21(6):2569–77.

    Article  CAS  PubMed  Google Scholar 

  35. Hassan EE, Parish RC, Gallo JM. Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole. Pharm Res. 1992;9(3):390–7.

    Article  CAS  PubMed  Google Scholar 

  36. Rango R, Barip K. A novel in situ method to test polymers and coated microparticles for bioadhesion. Int J Pharm. 1989;52:265–70.

    Article  Google Scholar 

  37. Bernkop-Schnurch A, Weithaler A, Albrecht K, Greimel A. Thiomers: preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. Int J Pharm. 2006;317(1):76–81.

    Article  PubMed  Google Scholar 

  38. Boyd BJ. Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm. 2003;260(2):239–47.

    Article  CAS  PubMed  Google Scholar 

  39. Fletcher AE, Bulpitt CJ, Hawkins CM, Havinga TK, ten Berge BS, May JF, et al. Quality of life on antihypertensive therapy: a randomized double-blind controlled trial of captopril and atenolol. J Hypertens. 1990;8(5):463–6.

    Article  CAS  PubMed  Google Scholar 

  40. Groel JT, Tadros SS, Dreslinski GR, Jenkins AC. Long-term antihypertensive therapy with captopril. Hypertension. 1983;5(5 Pt 2):III145–51.

  41. Waeber B, Gavras I, Brunner HR, Cook CA, Charocopos F, Gavras HP. Prediction of sustained antihypertensive efficacy of chronic captopril therapy: relationships to immediate blood pressure response and control plasma renin activity. Am Heart J. 1982;103(3):384–90.

    Article  CAS  PubMed  Google Scholar 

  42. Hwang SJ, Park H, Park K. Gastric retentive drug-delivery systems. Crit Rev Ther Drug Carrier Syst. 1998;15(3):243–84.

    PubMed  Google Scholar 

  43. Dawoud MZ, Nasr M. Comparison of drug release from liquid crystalline monoolein dispersions and solid lipid nanoparticles using a flow cytometric technique. Acta Pharm Sin B. 2016;6(2):163–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hashem FM, Dawoud M. A new approach to investigate drug release from liquid crystalline monoolein dispersions. J Pharm Res. 2014;8(12):1757–63.

    CAS  Google Scholar 

  45. de Araujo SC, de Mattos AC, Teixeira HF, Coelho PM, Nelson DL, de Oliveira MC. Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. Int J Pharm. 2007;337(1–2):307–15.

    Article  PubMed  Google Scholar 

  46. Thanoo BC, Sunny MC, Jayakrishnan A. Cross-linked chitosan microspheres: preparation and evaluation as a matrix for the controlled release of pharmaceuticals. J Pharm Pharmacol. 1992;44(4):283–6.

    Article  CAS  PubMed  Google Scholar 

  47. Clogston J, Caffrey M. Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids. J Control Release. 2005;107(1):97–111.

  48. Clogston J, Craciun G, Hart DJ, Caffrey M. Controlling release from the lipidic cubic phase by selective alkylation. J Control Release. 2005;102(2):441–61.

    Article  CAS  PubMed  Google Scholar 

  49. Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47(2–3):229–50.

    Article  CAS  PubMed  Google Scholar 

  50. Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15(23–24):1032–40.

    Article  CAS  PubMed  Google Scholar 

  51. Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X, et al. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine. 2013;8:845–54.

    PubMed  PubMed Central  Google Scholar 

  52. Nguyen TH, Hanley T, Porter CJ, Boyd BJ. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release. 2011;153(2):180–6.

    Article  CAS  PubMed  Google Scholar 

  53. Efrat R, Kesselman E, Aserin A, Garti N, Danino D. Solubilization of hydrophobic guest molecules in the monoolein discontinuous QL cubic mesophase and its soft nanoparticles. Langmuir. 2009;25(3):1316–26.

    Article  CAS  PubMed  Google Scholar 

  54. Engström S, Norden TP, Nyquist H. Cubic phases for studies of drug partition into lipid bilayers. Eur J Pharm Sci. 1999;8(4):243–54.

    Article  PubMed  Google Scholar 

  55. Yuan H, Miao J, Du YZ, You J, Hu FQ, Zeng S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int J Pharm. 2008;348(1–2):137–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 22UQU4350487DSR01

Author information

Authors and Affiliations

Authors

Contributions

Mohamed Dawoud: conceptualization, methodology, writing — original draft, investigation; Randa Abdou: methodology, resources — review and editing.

Corresponding author

Correspondence to Mohamed Dawoud.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawoud, M., Abdou, R. Preparation and Characterization of Bioadhesive Monoolein Cubosomes as Carriers for Captopril. J Pharm Innov 18, 118–127 (2023). https://doi.org/10.1007/s12247-022-09618-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09618-0

Keywords

Navigation