Skip to main content
Log in

Process Monitoring and Characterization for Extraction of Herbal Medicines Based on Proton (1H) Nuclear Magnetic Resonance Spectroscopy and Multivariate Batch Modeling: a Case Study

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The control of batch-to-batch quality variations remains a challenging task for herbal medicine (HM) pharmaceutics. In this study, a novel methodology consisting of Multivariate Statistical Process Control (MSPC) charts and 1H nuclear magnetic resonance (NMR) is developed for the process study of HM reflux extraction.

Methods

To well characterize the process and build an accurate model, the preprocessing methods of NMR batch data are first screened exhaustively. Statistical control charts, including partial least squares factor score, distance to the model X (DModX), and Hotelling T2, are then jointly employed as batch trajectory monitoring tools for fault monitoring. Finally, the reflux extraction process is characterized on comprehensive metabolite level through the characteristic information in the 1H NMR spectra.

Results

The dissolution, degradation, and transformation of primary and secondary metabolites in extract are traced based on the variation of metabolites’ concentration throughout the extraction process. Thirty-five metabolites are identified in the NMR spectra, and six of them are selected as chemical markers to demonstrate the impacts of abnormal operating conditions on the metabolite variation.

Conclusion

The current study demonstrates that the combination of multivariate batch modeling and 1H NMR technology realizes not only the process monitoring and fault detection based on MSPC theory but also the process characterization based on the rich qualitative and quantitative information in NMR data. Strategies demonstrated in this study are highly appealing to the research of manufacture process for HM preparations because of the improved process understanding and increased process control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang WY, Zhou H, Yang YF, Sang BS, Liu L. Current policies and measures on the development of traditional Chinese medicine in China. Pharmacol Res. 2020;105187. https://doi.org/10.1016/j.phrs.2020.105187.

  2. Uzuner H, Bauer R, Fan TP, Guo DA, Dias A, El-Nezami H, Efferth T, Williamson EM, Heinrich M, Robinson N, Hylands PJ, Hendry BM, Cheng YC, Xu Q. Traditional Chinese medicine research in the post-genomic era: good practice, priorities, challenges and opportunities. J Ethnopharmacol. 2012;140:458–68. https://doi.org/10.1016/j.jep.2012.02.028.

    Article  PubMed  Google Scholar 

  3. Xiong H, Gong X, Qu H. Monitoring batch-to-batch reproducibility of liquid–liquid extraction process using in-line near-infrared spectroscopy combined with multivariate analysis. J Pharm Biomed Anal. 2012;70:178–87. https://doi.org/10.1016/j.jpba.2012.06.028.

    Article  CAS  PubMed  Google Scholar 

  4. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline, Pharmaceutical Development Q8 (R1), Step 4. 2008.

  5. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline, Quality Risk Management Q9, Step 4. 2005.

  6. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline, Pharmaceutical Quality System Q10, Step 4. 2008.

  7. Pharmaceutical cGMPs for the 21st century: a risk-based approach. USA: FDA. 2002.

  8. de Oliveira RR, Pedroza RHP, Sousa AO, Lima KMG, de Juan A. Process modeling and control applied to real-time monitoring of distillation processes by near-infrared spectroscopy. Anal Chim Acta. 2017;985:41–53. https://doi.org/10.1016/j.aca.2017.07.038.

    Article  CAS  PubMed  Google Scholar 

  9. Kona R, Qu H, Mattes R, Jancsik B, Fahmy RM, Hoag SW. Application of in-line near infrared spectroscopy and multivariate batch modeling for process monitoring in fluid bed granulation. Int J Pharm. 2013;452:63–72. https://doi.org/10.1016/j.ijpharm.2013.04.039.

    Article  CAS  PubMed  Google Scholar 

  10. Huang H, Qu H. In-line monitoring of alcohol precipitation by near-infrared spectroscopy in conjunction with multivariate batch modeling. Anal Chim Acta. 2011;707:47–56. https://doi.org/10.1016/j.aca.2011.09.031.

    Article  CAS  PubMed  Google Scholar 

  11. Jin Y, Wu Z, Liu X, Wu Y. Near infrared spectroscopy in combination with chemometrics as a process analytical technology (PAT) tool for on-line quantitative monitoring of alcohol precipitation. J Pharm Biomed Anal. 2013;77:32–9. https://doi.org/10.1016/j.jpba.2013.01.012.

    Article  CAS  PubMed  Google Scholar 

  12. Sarraguça MC, Ribeiro PR, Dos Santos AO, Lopes JA. Batch statistical process monitoring approach to a cocrystallization process. J Pharm Sci. 2015;104:4099–4108. https://doi.org/10.1002/jps.24623.

  13. Zhao J, Li W, Qu H, Tian G, Wei Y. Real-time monitoring and fault detection of pulsed-spray fluid-bed granulation using near-infrared spectroscopy and multivariate process trajectories. Particuology. 2020. https://doi.org/10.1016/j.partic.2020.02.003.

    Article  Google Scholar 

  14. Alves-Rausch J, Bienert R, Grimm C, Bergmaier D. Real time in-line monitoring of large scale Bacillus fermentations with near-infrared spectroscopy. J Biotechnol. 2014;189:120–8. https://doi.org/10.1016/j.jbiotec.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  15. Vila TC, Poppi RJ, Lunardi I, Tizei P, Pedro A, Pereira GA. Raman spectroscopy and chemometrics for on‐line control of glucose fermentation by Saccharomyces cerevisiae. Biotechnol Prog. 2012;281598–1604. https://doi.org/10.1002/btpr.1615.

  16. Liu YJ, André S, Saint Cristau L, Lagresle S, Hannas A, Calvosa E, Devos O, Duponchel L. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW). Anal Chim Acta. 2017;952:9–17. https://doi.org/10.1016/j.aca.2016.11.064.

    Article  CAS  PubMed  Google Scholar 

  17. Cavaglia J, Schorn-García D, Giussani B, FerréJ, Busto O, Aceña L, Mestres M, Boqué R. Monitoring wine fermentation deviations using an ATR-MIR spectrometer and MSPC charts. Chemometr Intell Lab Syst. 2020;201:104011. https://doi.org/10.1016/j.chemolab.2020.104011.

  18. Lee SL, Djauhari MA. Quality control in cocoa powder production process: a robust MSPC approach. J Teknol (Sciences and Engineering). 2013;63:41–44. https://doi.org/10.11113/jt.v63.1910.

  19. Grassi S, Strani L, Casiraghi E, Alamprese C. Control and monitoring of milk renneting using FT-NIR spectroscopy as a process analytical technology tool. Foods. 2019;8:405. https://doi.org/10.3390/foods8090405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li W, Han H, Cheng Z, Zhang Y, Liu S, Qu H. A feasibility research on the monitoring of traditional Chinese medicine production process using NIR-based multivariate process trajectories. Sens Actuators B Chem. 2016;231:313–23. https://doi.org/10.1016/j.snb.2016.03.023.

    Article  CAS  Google Scholar 

  21. Masuda Y, Kaneko H, Funatsu K. Multivariate statistical process control method including soft sensors for both early and accurate fault detection. Ind Eng Chem Res. 2014;53:8553–64. https://doi.org/10.1021/ie501024w.

    Article  CAS  Google Scholar 

  22. Jiang Q, Yan X, Yi H, Gao F. Data-driven batch-end quality modeling and monitoring based on optimized sparse partial least squares. IEEE Trans Ind Electron. 2020;67:4098–107. https://doi.org/10.1109/TIE.2019.2922941.

    Article  Google Scholar 

  23. Rato TJ, Reis MS. Optimal selection of time resolution for batch data analysis, part I: predictive modeling. AIChE J. 2018;64:3923–33. https://doi.org/10.1002/aic.16361.

    Article  CAS  Google Scholar 

  24. Märk J, Andre M, Karner M, Huck CW. Prospects for multivariate classification of a pharmaceutical intermediate with near-infrared spectroscopy as a process analytical technology (PAT) production control supplement. Eur J Pharm Biopharm. 2010;76:320–7. https://doi.org/10.1016/j.ejpb.2010.06.015.

    Article  CAS  PubMed  Google Scholar 

  25. de Oliveira RR, Avila C, Bourne R, Muller F, de Juan A. Data fusion strategies to combine sensor and multivariate model outputs for multivariate statistical process control. Anal Bioanal Chem. 2020;412:2151–63. https://doi.org/10.1007/s00216-020-02404-2.

    Article  CAS  PubMed  Google Scholar 

  26. Du G, Song J, Du L, Zhang L, Qiang G, Wang S, Yang X, Fang L. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: a review of salvianolic acids. Adv Pharmacol. 2020;87:1–41. https://doi.org/10.1016/bs.apha.2019.12.004.

    Article  CAS  PubMed  Google Scholar 

  27. Savorani F, Tomasi G, Engelsen SB. Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010;202:190–202. https://doi.org/10.1016/j.jmr.2009.11.012.

    Article  CAS  PubMed  Google Scholar 

  28. Yu J. Nonlinear bioprocess monitoring using multiway Kernel localized Fisher discriminant analysis. Ind Eng Chem Res. 2011;50:3390–402. https://doi.org/10.1021/ie1017282.

    Article  CAS  Google Scholar 

  29. Eriksson L, Kettanehwold N, Trygg J, Wikström C, Wold S. Multi- and megavariate data analysis : part I: basic principles and applications. Umetrics Inc. 2006. https://doi.org/10.1201/b14117-9.

  30. Li W, Zhao F, Pan J, Qu H. Influence of ethanol concentration of extraction solvent on metabolite profiling for Salviae Miltiorrhizae Radix et Rhizoma extract by 1H NMR spectroscopy and multivariate data analysis. Process Biochem. 2020;97:158–67. https://doi.org/10.1016/j.procbio.2020.06.008.

    Article  CAS  Google Scholar 

  31. Zhao F, Li W, Pan J, Chen Z, Qu H. A novel critical control point and chemical marker identification method for the multi-step process control of herbal medicines via NMR spectroscopy and chemometrics. RSC Adv. 2020;10:23801–12. https://doi.org/10.1039/D0RA03172K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Emwas AH, Saccenti E, Gao X, Mckay RT. Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine. Metabolomics. 2018;14:31. https://doi.org/10.1007/s11306-018-1321-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Izquierdo-García JL, Villa P, Kyriazis A, del Puerto-Nevado L, Pérez-Rial S, Rodriguez I, Hernandez N, Ruiz-Cabello J. Descriptive review of current NMR-based metabolomic data analysis packages. Prog Nucl Magn Reson Spectrosc. 2011;59:263–70. https://doi.org/10.1016/j.pnmrs.2011.02.001.

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Suo T, Wu X, Zhang Y, Wang C, Yu H, Li Z. Near infrared spectroscopy based monitoring of extraction processes of raw material with the help of dynamic predictive modeling. Spectrochim Acta A Mol Biomol Spectrosc. 2018;192:222–7. https://doi.org/10.1016/j.saa.2017.11.023.

    Article  CAS  PubMed  Google Scholar 

  35. Li W, Qu H. Rapid quantification of phenolic acids in Radix Salvia miltrorrhiza extract solutions by FT-NIR spectroscopy in transflective mode. J Pharm Biomed Anal. 2010;5:425–31. https://doi.org/10.1016/j.jpba.2010.01.009.

    Article  CAS  Google Scholar 

  36. Gao L, Zhong L, Zhang J, Zhang M, Zeng Y, Li L, Zang H. Water as a probe to understand the traditional Chinese medicine extraction process with near infrared spectroscopy: a case of Danshen (Salvia miltiorrhiza Bge) extraction process. Spectrochim Acta A Mol Biomol Spectrosc. 2021;244:118854. https://doi.org/10.1016/j.saa.2020.118854.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National S&T Major Project of China (2018ZX09201011-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Qu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1031 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhao, F., Pan, J. et al. Process Monitoring and Characterization for Extraction of Herbal Medicines Based on Proton (1H) Nuclear Magnetic Resonance Spectroscopy and Multivariate Batch Modeling: a Case Study. J Pharm Innov 18, 102–117 (2023). https://doi.org/10.1007/s12247-022-09629-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09629-x

Keywords

Navigation