Skip to main content
Log in

Effect of Zr Additions on Phase Transformations, Microstructure and Wear Resistance of High-Entropy AlCoCrCuFe Alloy

  • Published:
Metal Science and Heat Treatment Aims and scope

Effect of zirconium additions on the microstructure, phase composition, microhardness and wear resistance of high-entropy AlCoCrCuFe alloys with equal mole fractions of the components is studied. The methods of x-ray diffraction, optical and electron microscopy and mechanical wear tests are used for the metallographic study. Zirconium additions are shown to affect positively the hardness, strength and wear resistance of the AlCoCrCuFeZr alloy due to refinement of grains, solid-solution hardening and changes in the phase composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Yan and Y. Zhang, “Functional properties and promising applications of high entropy alloys,” Scr. Mater., 187, 188 – 193 (2020).

    Article  CAS  Google Scholar 

  2. J.W. Yeh, S. K. Chen, S. J. Lin, et al., “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,” Adv. Eng. Mater., 6(5), 299 – 303 (2004).

    Article  CAS  Google Scholar 

  3. Q. Ding, Y. Zhang, X. Chen, et al., “Tuning element distribution, structure and properties by composition in high-entropy alloys,” Nature, 574, 223 – 227 (2019).

    Article  CAS  Google Scholar 

  4. Y. G. Yao, Z. N. Huang, P. F. Xie, et al., “Carbothermal shock synthesis of high-entropy-alloy nanoparticles,” Science, 359, 1489 – 1494 (2018).

    Article  CAS  Google Scholar 

  5. L. Han, X. Xu, Z. Li, et al., “A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures,” Mater. Res. Lett., 8(10), 373 – 382 (2020).

    Article  CAS  Google Scholar 

  6. S. Luo, Y. Su, and Z. Wang, “Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting,” Sci. China Mater., 63, 1279 – 1290 (2020).

    Article  CAS  Google Scholar 

  7. Y. Yu, F. He, Z. Qiao, et al., “Effects of temperature and microstructure on the tribological properties of CoCrFeNiNbx eutectic high entropy alloys,” J. Alloy Compd., 775, 1376 – 1385 (2019).

    Article  CAS  Google Scholar 

  8. Y.Wang, R. Li, P. Niu, et al., “Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting,” Intermetallics, 120, 106746 (2020).

    Article  CAS  Google Scholar 

  9. Y. Zhang, Z. Chen, D. Cao, et al., “Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy,” J. Mater. Res. Technol., 8(1), 726 – 736 (2019).

    Article  CAS  Google Scholar 

  10. X. S. Luo, J. Li, Y. L. Jin, et al., “Heat treatment influence on tribological properties of AlCoCrCuFeNi high-entropy alloy in hydrogen peroxide-solution,” Met. Mater. Int., 54, 1 – 9 (2019).

    Google Scholar 

  11. G. H. Meng, N. A. Protasova, E. P. Kruglov, et al., “Solidification behavior and morphological evolution in laser surface forming of AlCoCrCuFeNi multi-layer high-entropy alloy coatings on AZ91D,” J. Alloy Compd., 772, 994 – 1002(2019).

    Article  CAS  Google Scholar 

  12. Y. Plevachuk, J. Brillo, and A. Yakymovych, “AlCoCrCuFeNi-based high-entropy alloys: correlation between molar density and enthalpy of mixing in the liquid state,” Metall. Mater. Trans. A, 49, 6544 – 6552 (2018).

    Article  CAS  Google Scholar 

  13. M. X. Ma, Z. X. Wang, C. Liang, et al., “Effect of CeO2 doping on microstructure, friction and wear properties of AlCoCrCuFe high-entropy alloys,” J. Mater. Eng., 47, 106 – 111 (2019).

    Google Scholar 

  14. C. C. Tung, J. W. Yeh, and T. T. Shun, “On the elemental effect of AlCoCrCuFeNi high-entropy alloy system,” Mater. Lett., 61(1), 1 – 5 (2007).

    Article  CAS  Google Scholar 

  15. M. X. Ma, D. C. Zhu, Z. X. Wang, et al., “Microstructure and wear resistance of AlCoCrCuFe high-entropy alloy,” Adv. Eng. Sci., 50, 208 – 213 (2018).

    Google Scholar 

  16. S. Praveen, B. S. Murty, and R. S. Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng. A, 534, 83 – 89 (2012).

    Article  CAS  Google Scholar 

  17. M. Murali, S. P. Kumaresh Babu, B. Jeevan Krishna, et al., “Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying,” Prog. Nat. Sci. Mater., 26(4), 380 – 384 (2016).

    Article  CAS  Google Scholar 

  18. M. Murali, S. P. Kumaresh Babu, J. Majhi, et al., “Processing and characterisation of nano crystalline AlCoCrCuFeTix high-entropy alloy,” Powder Metall., 61, 139 – 148 (2018).

    Article  CAS  Google Scholar 

  19. H. B. Xie, G. Z. Liu, and J. J. Guo, “Effects of Mn, V, Mo, Ti, Zr elements on microstructure and high temperature oxidation performance of AlFeCrCoCu-X high-entropy alloys,” China. J. Nonferrous Met., 25(1), 103 – 110 (2015).

    Article  CAS  Google Scholar 

  20. S. Zhang, C. L.Wu, J. Z. Yi, et al., “Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying,” Surf. Coat. Technol., 262, 64 – 69 (2015).

    Article  CAS  Google Scholar 

  21. M. X. Ma, D. C. Zhu, C. Zhao, et al., “Luminescence properties of Eu2+ doped BaAl2Si2O8 phosphor for white LEDs,” Sci. China Phys. Mech. Astron., 54(10), 1783 – 1786 (2011).

    Article  CAS  Google Scholar 

  22. M. X. Ma, Z. X. Wang, J. C. Zhou, et al., “Effect of CeO2 doping on phase structure and microstructure of AlCoCuFeMnNi alloy coating,” Mater. Res., 22(1), e20180327 (2019).

    CAS  Google Scholar 

  23. M. X. Ma, Z. X. Wang, J. C. Zhou, et al., “Effect of Ti doping on microstructure and wear resistance of CoCrCuFeMn high-entropy alloys,” J. Mech. Eng., 56,110 – 116 (2020).

    Google Scholar 

  24. A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element,” Mater. Trans., 46(12), 2817 – 2829 (2005).

    Article  CAS  Google Scholar 

  25. M. X. Ma, Z. X. Wang, J. C. Zhou, et al., “Microstructure and phase transformation of AlCoCrCuFe high entropy alloy,” Hot Work. Technol., 47, 31 – 34 (2018).

    CAS  Google Scholar 

  26. X. M. Pan, X. F. Bian, J. Y. Qin, et al., “Medium-range order structure clusters in Cu – 12% Al alloys melt,” Acta Phys. Chim. Sin., 17(8), 708 – 712 (2001).

    Article  CAS  Google Scholar 

  27. H. Guo, M. Enomoto, and C. J. Shang, “Simulation of bcc-Cu precipitation in ternary Fe – Cu – M alloys,” Comp. Mater. Sci., 141, 101 – 113 (2018).

    Article  CAS  Google Scholar 

Download references

The work has been supported by the National Natural Science Foundation of China (No. 51271115) and the Key Scientific Research Projects of the Henan Province, China (No. 20B430022).

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 9 – 18, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Wang, Z., Zhou, J. et al. Effect of Zr Additions on Phase Transformations, Microstructure and Wear Resistance of High-Entropy AlCoCrCuFe Alloy. Met Sci Heat Treat 63, 470–478 (2022). https://doi.org/10.1007/s11041-022-00713-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00713-0

Key words

Navigation