Skip to main content
Log in

A Study of the Mechanism of Formation of Composite Oxide Scale on Heat-Resistant Steel 25Cr18Ni9Si2

  • Published:
Metal Science and Heat Treatment Aims and scope

The methods of scanning electron microscopy, energy dispersive analysis and x-ray diffractometry are used to study the kinetics and the mechanism of formation of complex-composition oxide scale on the surface of heat-resistant steel 25Cr18Ni9Si2 during oxidation at 900°C for 500 h. The composition of the scale and the proportion of the gain in the weight to the duration of the oxidation are determined. It is shown that the formation of the composite scale is connected with simultaneous oxidation and reduction of Si, Cr, Fe, and Ni accompanied by refinement of the oxide grains. It is inferred that the dense composite oxide scale is responsible for the high resistance of the steel to oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. S. Yu. Kondrat’ev, S. N. Petrov, G. P. Anastasiadi, and A. V. Tsemenko, “Structural features of cast refractory alloy HP40NbTi high-temperature oxidation. Part I. Evolution of microstructure and phase composition,” Met. Sci. Heat Treat., 62, 35 – 45 (2020).

    Article  Google Scholar 

  2. S. Yu. Kondrat’ev, S. N. Petrov, G. P. Anastasiadi, and A. V. Tsemenko, “Structural features of cast refractory alloy HP40NbTi high-temperature oxidation. Part 2. Microstructure and phase composition evolution,” Met. Sci. Heat Treat., 62, 46 – 54 (2020).

    Article  Google Scholar 

  3. Liu-zhen Bian, Zhi-yuan Chen, Li-jun Wang, et al., “Oxidation resistance, thermal expansion and area specific resistance of Fe – Cr alloy interconnector for solid oxide fuel cell,” J. Iron Steel Res. Int., 24, 77 – 83 (2017).

    Article  Google Scholar 

  4. C. Y. Cui, C. D. Xia, X. G. Cui, et al., “Novel morphologies and growth mechanism of Cr2O3 oxide formed on stainless steel surface via Nd: YAG pulsed laser oxidation,” J. Alloys Compd., 635, 101 – 106 (2015).

    Article  CAS  Google Scholar 

  5. Hongsheng Chen, HaiboWang, Qingzhu Sun, et al., “Oxidation behavior of Fe – 20Cr – 25Ni – Nb austenitic stainless steel in high-temperature environment with small amount of water vapor,” Corros. Sci., 145, 90 – 99 (2018).

    Article  CAS  Google Scholar 

  6. Ya-Xin Xu, Xiao-Tao Luo, Cheng-Xin Li, et al., “Formation of Cr2O3 diffusion barrier between Cr-contained stainless steel and cold-sprayed Ni coatings at high temperature,” J. Therm. Spray Technol., 25, 526 – 534(2016).

    Article  Google Scholar 

  7. Mikako Takeda, Hitoshi Kushida, Takashi Onishi, et al., “Influence of oxidation temperature and Cr content on the adhesion and microstructure of scale on low Cr steels,” Oxid. Met., 73, 1 – 13 (2010).

    Article  CAS  Google Scholar 

  8. L. C. An, J. Cao, T. Zhang, and Y. T. Yang, “Cr diffusion and continuous repairing behavior during high-temperature oxidation of duplex stainless steel,” Mater. Corros., 68, 1116 – 1122 (2017).

    Article  CAS  Google Scholar 

  9. Shoichi Matsubara, Tomiko Yamaguchi, and Fujimitsu Masuyama, “Effect of Cr content and microstructure on high temperature oxidation behavior of high nitrogen heat-resistant ferritic steels,” ISIJ Int., 58, 2102 – 2109 (2018).

    Article  CAS  Google Scholar 

  10. Thuan Dinh Nguyen, Jianqiang Zhang, and David J. Young, “Water vapor effects on corrosion of Fe – Cr and Fe – Cr – Ni alloys containing silicon in CO2 gas at 818°C,” Oxid. Met., 83, 575 – 594 (2015).

    Article  CAS  Google Scholar 

  11. Hong-huan Mao, Xing Qi, Jing Cao, et al., “Effect of Si on high temperature oxidation of 30Cr13 stainless steel,” J. Iron Steel Res. Int., 24, 561 – 568 (2017).

    Article  Google Scholar 

  12. Xiao-jiang Liu, Yong-quan He, Guang-ming Cao, et al., “Effect of Si content and temperature on oxidation resistance of Fe – Si alloys,” J. Iron Steel Res. Int., 22, 238 – 244 (2015).

    Article  CAS  Google Scholar 

  13. L. A. Pisarevskii, G. A. Filippov, and A. A. Lipatov, “Effect of N, Mo, and Si on local corrosion resistance of unstabilized Cr – Ni and Cr – Mn – Ni austenitic steels,” Metallurgist, 60, 822 – 831 (2016).

    Article  CAS  Google Scholar 

  14. Jae-Hwang Ko and Dong-Bok Lee, “Oxidation of Ni films electroplated on steel,” Met. Mater. Int., 11, 85 – 88 (2005).

    Article  CAS  Google Scholar 

  15. Yi-zhi Liu, Cai-fu Yang, Feng Chai, et al., “High temperature oxidation resistance of 9Ni steel,” J. Iron Steel Res. Int., 21, 956 – 963 (2014).

    Article  CAS  Google Scholar 

  16. Dong-liang Li, Gui-qin Fu, Miao-yong Zhu, et al., “Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere,” Int. J. Miner. Metall. Mater., 25, 325 – 338 (2018).

    Article  CAS  Google Scholar 

  17. T. Jonsson, H. Larsson, S. Karlsson, et al., “High-temperature oxidation of FeCr(Ni) alloys: The behaviour after breakaway,” Oxid. Met., 87, 333 – 341 (2017).

    Article  CAS  Google Scholar 

  18. Qing Yuan, Guang Xu,Wei-cheng Liang, et al., “Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating,” Int. J. Miner. Metall. Mater., 25, 164 – 172 (2018).

    Article  CAS  Google Scholar 

  19. Hong Dong, Pei Wang, Dianzhong Li, and Yiyi Li, “Effect of pre-deformation on the oxidation resistance of a high Si ferritic/martensitic steel in oxygen-saturated stagnant lead-bismuth eutectic at 550°C,” Corros. Sci., 118, 129 – 142 (2017).

    Article  CAS  Google Scholar 

  20. Qing Yuan, Guang Xu, Weicheng Liang, et al., “Effects of oxygen concentration on the passivation of Si-containing steel during high-temperature oxidation,” Corros. Rev., 36, 385 – 393 (2018).

    Article  CAS  Google Scholar 

  21. Dening Zou, Yuqing Zhou, Xin Zhang, et al., “High temperature oxidation behavior of a high Al-containing ferritic heat-resistant stainless steel,” Mater. Charact., 136, 435 – 443 (2018).

    Article  CAS  Google Scholar 

  22. Jian Ren, Liming Yu, Yongchang Liu, et al., “Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600°C,” Appl. Surf. Sci., 480, 969 – 978 (2019).

    Article  CAS  Google Scholar 

  23. Philippe Refait, Marc Jeannin, Thomas Urios, et al., “Corrosion of low alloy steel in stagnant artificial or stirred natural seawater: The role of Al and Cr,” Mater. Corros., 70, 985 – 995 (2019).

    Article  CAS  Google Scholar 

  24. S. Mahboubi, Y. Jiao, W. Cook, et al., “Stability of chromia (Cr2O3)-based scales formed during corrosion of austenitic Fe – Cr – Ni alloys in flowing oxygenated supercritical water,” Corrosion, 72, 1170 – 1180 (2016).

    Article  CAS  Google Scholar 

  25. Grzegorz Smola, Richard Gawel, Karol Kyziol, et al., “Influence of nickel on the oxidation resistance at high temperatures of thin chromium coatings,” Oxid. Met., 91, 625 – 640 (2019).

    Article  CAS  Google Scholar 

  26. Shoichi Matsubara, Tomiko Yamaguchi, and Fujimitsu Masuyama, “High temperature oxidation behavior of high nitrogen 9% Cr steels,” ISIJ Int., 58, 2095 – 2101 (2018).

    Article  CAS  Google Scholar 

  27. S. Yu. Kondrat’ev, G. P. Anastasiadi, A. V. Ptashnik, S. N. Petrov, “The mechanisms of scale and subsurface diffusion zone formation of heat-resistant HP40NbTi alloy at long-term high-temperature exposure,” Materialia, 7, 100427 (2019).

    Article  Google Scholar 

  28. S. Yu. Kondrat’ev, G. P. Anastasiadi, A. V. Ptashnik, S. N. Petrov, “Kinetics of the high-temperature oxidation of heat-resistant statically and centrifugally cast HP40NbTi alloys,” Oxid. Met., 91, 33 – 53 (2019).

    Article  Google Scholar 

  29. G. P. Anastasiadi, S. Yu Kondrat’ev, and A. I. Rudskoy, “Selective high-temperature oxidation of phases in a cast refractory alloy of the 25Cr – 35Ni – Si – Nb – C system,” Met. Sci. Heat Treat., 56, 403 – 408 (2014).

    Article  CAS  Google Scholar 

  30. S. Yu Kondrat’ev, G. P. Anastasiadi, A. V. Ptashnik, and S. N. Petrov, “Evolution of the microstructure and phase composition of a subsurface of cast HP-type alloy during a long-term high-temperature aging,” Mater. Charact., 150, 166 – 173 (2019).

    Article  Google Scholar 

  31. S. Yu Kondrat’ev, G. P. Anastasiadi, and A. I. Rudskoy, “Nanostructure mechanism of formation of oxide film in heat-resistant Fe – 25Cr – 35Ni superalloys,” Met. Sci. Heat Treat., 56, 531 – 536 (2015).

    Article  Google Scholar 

  32. M. M. Krishtal, P. V. Ivashin, A. V. Polunin et al., “Effect of SiO2 nanoparticles and soluble silicate on the composition and properties of oxide layers formed by microarc oxidizing on magnesium Mg96,” Met. Sci. Heat Treat., 61, 149 – 156 (2019).

    Article  CAS  Google Scholar 

  33. Jiayun Zhang, Physical Chemistry of Metallurgy [in Chinese], Metallurgical Industry Press, Beijing, China (2004), p. 332 – 334.

    Google Scholar 

  34. Yutaka Ohya, Yusuke Ishii, and Takayuki Ban, “Reaction of molten aluminum with MgO and formation of MgAl2O4 spinel at 1000°C,” Mater. Trans., 61, 339 – 345 (2020).

    Article  CAS  Google Scholar 

  35. Chao Jin, Jie Liu, Dongxing Zheng, et al., “Effect of cation substitution on the magnetic and magnetotransport properties of epitaxial Fe3–xVxO4 films,” Appl. Surf. Sci., 332, 70 – 75 (2015).

    Article  CAS  Google Scholar 

  36. Weijun Huang, Min Chen, Xiang Shen, et al., “Phase diagrams and thermodynamic properties of the FeO – SiO2 – V2O3 systems,” Steel Res. Int., 88 (2017).

  37. Qiuxia Cai, Jian-Guo Wang, Yong Wang, and Donghai Mei, “First-principles thermodynamics study of spinel MgAl2O4 surface stability,” J. Phys. Chem. C, 120, 19,087 – 19,096 (2106).

  38. Nanqi Duan, Minrui Gao, Bin Hua, et al., “Exploring Ni(Mn1/3Cr2/3)2O4 spinel-based electrodes for solid oxide cells,” J. Mater. Chem. A, 8, 3988 – 3998 (2020).

    Article  CAS  Google Scholar 

  39. Haiyan Li, Shengnan Sun, and Shibo Xi, “Metal-oxygen hybridization determined activity in spinel-based oxygen evolution catalysts: A case study of ZnFe2–xCrxO4,” Chem. Mater., 30, 6839 – 6848 (2018).

    Article  CAS  Google Scholar 

  40. Yu Wang, Ai-Pin Jia, and Meng-Fei Luo, “Highly active spinel type CoCr2O4 catalysts for dichloromethane oxidation,” Appl. Catal. B-Environ., 165, 477 – 486 (2015).

    Article  CAS  Google Scholar 

Download references

The work has been supported financially by the National Natural Science Foundation of China (NSFC 51775289) and the Major Project of the Shandong Province Natural Science Foundation (ZR2018ZB0524).

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 23 – 29, October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sun, S. A Study of the Mechanism of Formation of Composite Oxide Scale on Heat-Resistant Steel 25Cr18Ni9Si2. Met Sci Heat Treat 63, 540–546 (2022). https://doi.org/10.1007/s11041-022-00725-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00725-w

Key words

Navigation