Skip to main content
Log in

Effect of Annealing on Precipitation Hardening Behavior of 4% Al Austenitic Steel During Creep

  • HEAT TREATMENT
  • Published:
Metal Science and Heat Treatment Aims and scope

Austenitic steel AFA alloyed with 4% Al is studied in the state as delivered and after annealing at 1050 and 1230°C. The chemical composition of the steel is determined, the microstructure is analyzed, and the morphology of the secondary phases is studied using scanning electron microscopy and diffraction analysis. The high-temperature creep curves are plotted. The variation of the properties of the steel is analyzed after the creep tests. The annealing is shown to affect positively the creep resistance of steel AFA. The parameters of high-temperature creep are higher after the annealing at 1230°C; the rate of steady creep is equal to 1.61 × 10 – 6 sec – 1; the activation energy is 608.2 kJ/mole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. B. Xiao, L. Xu, L. Zhao, et al., “Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short-term creep,” Mater. Sci. Eng. A, 707, 466 – 477 (2017).

    Article  CAS  Google Scholar 

  2. Q. Z. Gao, Y. N. Zhang, H. L. Zhang, et al., “Precipitates and particles coarsening of 9Cr – 1.7W – 0.4Mo – Co ferritic heat-resistant steel after isothermal aging,” Sci. Rep., 7, Art. 5859 (2017).

  3. S. F. Peterson, M. S. Mataya, and D. K. Matlock, “The formability of austenitic stainless steels,” JOM-J. Miner. Met. Mater. Soc., 49(9), 54 – 58 (1997),

    Article  CAS  Google Scholar 

  4. X. Li, L. Shi, Y. Liu, K. Gan, and C. Liu, “Achieving a desirable combination of mechanical properties in HSLA steel through step quenching,” Mater. Sci. Eng. A, 772, Art. 138683 (2020).

  5. Z. Tan, L. Yang, X. Wang, et al., “Evolution of TCP phase during long term thermal exposure in several Re-containing single crystal superalloys,” Acta Metall. Sin. (Eng. Lett.), 33(5), 731 – 740 (2020).

    Article  CAS  Google Scholar 

  6. Q. Z. Gao, Y. G. Jiang, Z. Y. Liu, et al., “Effects of alloying elements on microstructure and mechanical properties of Co – Ni – Al – Ti superalloy,” Mater. Sci. Eng. A, 779, Art. 139139 (2020).

  7. X. A. Xu, G. L. Zhao, Y. Jiang, et al., “Experimental investigation on the LCF behavior affected by manufacturing defects and creep damage of one selective laser melting nickel-based superalloy at 815 degrees C,” Acta Mech. Sin., 33(4), 514 – 527 (2020).

    Article  Google Scholar 

  8. Q. Gao, Z. Liu, H. Li, et al., “High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling,” J. Mater. Sci. Technol., 68, 91 – 102 (2021).

    Article  Google Scholar 

  9. Q. Z. Gao, X. Dong, C. Li, et al., “Microstructure and oxidation properties of 9Cr – 1.7W – 0.4Mo – Co ferritic steel after isothermal aging,” J. Alloys Compd., 651, 537 – 543 (2015).

    Article  CAS  Google Scholar 

  10. S. Vujic, R. Sandstrom, and C. Sommitsch, “Precipitation evolution and creep strength modeling of 25Cr20NiNbN austenitic steel,” Mater. High Temp., 32(6), 607 – 618 (2015).

    Article  Google Scholar 

  11. J. Chen, H. Q. Liu, G. Y. Lin, et al., “Interfacial reactions between ZrSnNb and FeCAl alloy during diffusion bonding, hot rolling and annealing,” J. Alloys Compd., 823, Art. 153736 (2020).

  12. Y. Yamamoto, M. P. Brady, Z. P. Lu, et al., “Creep-resistant Al2O3-forming austenitic stainless steel,” Science, 316, Art. 5823, 433 – 436 (2007).

  13. J. Moon, T. H. Lee, Y. U. Heo, et al., “Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel,” Mater. Sci. Eng. A, 645, 72 – 81 (2015).

    Article  CAS  Google Scholar 

  14. G. Trotter and I. Baker, “The effect of aging on the microstructure and mechanical behavior of the alumina-forming austenitic stainless steel Fe – 20Cr – 30Ni –2Nb – 5Al,” Mater. Sci. Eng. A, 627, 270 – 276 (2015).

    Article  CAS  Google Scholar 

  15. B. Zhao, K. Chang, J. Fan, et al., “Annealing effects on precipitation and high-temperature properties of a Cu-containing alumina-forming austenitic steel,” Mater. Lett., 176, 83 – 86 (2016).

    Article  CAS  Google Scholar 

  16. A. L. Vidilli, L. B. Otani, W. Wolf, et al., “Design of a FeMnAlC steel with TWIP effect and evaluation of its tensile and fatigue properties,” J. Alloys Compd., 831, Art. 154806 (2020).

    Article  Google Scholar 

  17. H. C. Wang, I. Shuro, M. Imemoto, et al., “Annealing behavior of nano-crystalline austenitic SUS316L produced by HPT,” Mater. Sci. Eng. A, 556, 906 – 910 (2012).

    Article  CAS  Google Scholar 

  18. V. Srivastava, J. P. Williams, K. R. McNee, et al., “Low stress creep behaviour of 7075 high strength aluminum alloy,” Mater. Sci. Eng. A, 382(1 – 2), 50 – 56 (2004).

  19. C. J. Choi, J. K. Park, and W. W. Park, “Creep deformation behavior of mechanically alloyed Al – 10Ti – 2Si alloy,” Scr. Mater., 36, 769 – 774 (1997).

    Article  CAS  Google Scholar 

  20. T. C. Totemeier and T. M. Lillo, “Effect of orientation on the tensile and creep properties of coarse-grained INCONEL alloy MA754,” Metall. Mater. Trans. A, 36A(3A), 785 – 795 (2005).

    Article  CAS  Google Scholar 

  21. Z. G. Liu, P. J. Li, L. T. Xiong, et al., “High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy,” Mater. Sci. Eng. A, 680, 259 – 269 (2017).

    Article  CAS  Google Scholar 

  22. A. Dehghan-Manshadi, M. Barnett, and P. D. Hodgson, “Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization,” Metall. Mater. Trans. A, 39A(6), 1359 – 1370 (2008).

    Article  CAS  Google Scholar 

  23. M. H. Jang, J. Moon, J. Y. Kang, et al., “Effect of tungsten addition on high-temperature properties and microstructure of alumina-forming austenitic heat-resistant steels,” Mater. Sci. Eng. A, 647, 163 – 169 (2015).

    Article  CAS  Google Scholar 

  24. S. Frechard, A. Redjamia, E. Lach, and A. Lichtenberger, “Dynamical behaviour and microstructural evolution of a nitrogen-alloyed austenitic stainless steel,” Mater. Sci. Eng. A, 480(1 – 2), 89 – 95 (2008).

  25. Q. Z. Gao, H. L. Zhang, H. J. Li, et al., “Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior,” J. Mater. Sci., 54(11), 8760 – 8777 (2019).

    Article  CAS  Google Scholar 

  26. A. Mohamadizadeh, A. Zarei-Hanzaki, and H. R. Abedi, “Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters,” Mech. Mater., 95, 60 – 70 (2016).

    Article  Google Scholar 

  27. F. Reyes-Calderon, I. Mejia, and J. M. Cabrera, “Hot deformation activation energy (Q(HW)) of austenitic Fe – 22Mn – 1.5Al – 1.5 Si – 0.4C TWIP steels microalloyed with Nb, V, and Ti,” Mater. Sci. Eng. A, 562, 46 – 52 (2013).

    Article  CAS  Google Scholar 

  28. W. H. Liu, Y. Wu, J. Y. He, et al., “Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy,” Scr. Mater., 68(7), 526 – 529 (2013).

  29. A. Kimura, R. Kasada, R. Sugano, et al., “Annealing behavior of irradiation hardening and microstructure in helium-implanted reduced activation martensitic steel,” J. Nucl. Mater., 283, 827 – 831 (2000).

    Article  Google Scholar 

  30. S. K. Sharma, C. Jang, and K. J. Kang, “Effect of thermo-mechanical processing on microstructure and creep properties of the foils of alloy 617,” J. Nucl. Mater., 389(3), 420 – 426 (2009).

    Article  CAS  Google Scholar 

  31. N. Dudova, A. Plotnikova, D. Molodov, et al., “Structural changes of tempered martensitic 9% Cr – 2% W – 3% Co steel during creep at 650°C,” Mater. Sci. Eng. A, 534, 632 – 639 (2012).

    Article  CAS  Google Scholar 

  32. M. H. Jang, J. Y. Kang, J. H. Jang, et al., “Microstructure control to improve creep strength of alumina-forming austenitic heat-resistant steel by pre-strain,” Mater. Charact., 137, 1 – 8 (2018).

    Article  CAS  Google Scholar 

  33. G. Dimmler, P.Weinert, and H. Cerjak, “Analysis of steady state creep behaviour of 9 – 12% chromium ferritic-martensitic steels,” Mater. Sci. Technol., 20(12), 1525 – 1530 (2013).

  34. Y. J. Jiang, Q. Z. Gao, H. L. Zhang, et al., “The effect of isothermal aging on microstructure and mechanical behavior of modified 2.5 Al alumina-forming austenitic steel,” Mater. Sci. Eng. A, 748, 161 – 172 (2019).

    Article  CAS  Google Scholar 

  35. I. Fedorova, A. Belyakov, P. Kozlov, et al., “Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K,” Mater. Sci. Eng. A, 615, 153 – 163 (2014).

    Article  CAS  Google Scholar 

  36. Y. Kadoya, B. E. Dyson, and M. McLean, “Microstructural stability during creep of Mo- or W-bearing 12Cr steels,” Metall. Mater. Trans. A, 33(8), 2549 – 2557 (2002).

    Article  Google Scholar 

  37. K. Maruyama, K. Sawada, and J. Koike, “Strengthening mechanisms of creep resistant tempered martensitic steel,” ISIJ Int., 41(6), 641 – 653 (2001).

    Article  CAS  Google Scholar 

  38. G. K. Williamson and R. E. Smallman, “III. Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray debye-scherrer spectrum,” Philos. Mag., 1(1), 34 – 46 (1956).

    Article  CAS  Google Scholar 

  39. M. Adhikary, A. Chakraborty, A. Das, et al., “Influence of annealing texture on dynamic tensile deformation characteristics of Dual phase steel,” Mater. Sci. Eng. A, 736, 209 – 218 (2018).

    Article  CAS  Google Scholar 

  40. M. P. Brady, J. Magee, Y. Yamamoto, et al., “Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance,” Mater. Sci. Eng. A, 590, 101 – 115 (2014).

    Article  CAS  Google Scholar 

  41. Q. Z. Gao, F. Qu, H. L. Zhang, and Q Huo, “Austenite grain growth in alumina-forming austenitic steel,” J. Mater. Res., 31(12), 1732 – 1740 (2016).

    Article  CAS  Google Scholar 

  42. H. Hayakawa, S. Nakashima, J. Kusumoto, et al., “Creep deformation characterization of heat resistant steel by stress change test,” Int. J. Press. Vessels Pip., 86(9), 556 – 562 (2009).

    Article  CAS  Google Scholar 

  43. Z. Y. Liu, Q. Z. Gao, H. L. Zhang, et al., “EBSD analysis and mechanical properties of alumina-forming austenitic steel during hot deformation and annealing,” Mater. Sci. Eng. A, 755, 106 – 115 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 37 – 45, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Zou, B., Gao, Q. et al. Effect of Annealing on Precipitation Hardening Behavior of 4% Al Austenitic Steel During Creep. Met Sci Heat Treat 63, 496–504 (2022). https://doi.org/10.1007/s11041-022-00718-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00718-9

Key words

Navigation