Skip to main content

Advertisement

Log in

Subjective cognitive decline and total energy intake: Talk too much?

  • COMMENTARY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The increasing longevity of the population has resulted in dementia becoming a leading cause of both death and disability. Dementia is not a single disease. Studies of rare Mendelian disorders have documented that Alzheimer's disease, the most common cause of dementia, is associated with a long incubation period from amyloid deposition to neurodegeneration to mild cognitive impairment and dementia. There are three broad hypotheses related to the causes of Alzheimer's dementia: (1) an aging process; (2) brain vascular disease; and (3) metabolic abnormalities associated with either increased production of amyloid-β or decreased clearance from the brain. Therefore, research on the early stages of the dementia process are of high priority. This paper reports that higher energy intake in both the Nurses’ Health Study and Health Professionals Follow-up Study is associated with very early symptoms that lead to mild cognitive impairment and dementia. The results are very interesting but hard to interpret because they also show that higher energy intake is not related to body mass index, a very unusual observation. A likely hypothesis is that there is an association between reporting of dietary intake and subjective symptoms, i.e. reporting bias, accounting for their results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeh TS, Yuan C, Ascherio A, Rosner BA, Blacker D, Willett WC. Long-term intake of total energy and fat in relation to subjective cognitive decline. Eur J Epidemiol. 2021. https://doi.org/10.1007/s10654-021-00814-9.

    Article  PubMed  Google Scholar 

  2. Akbaraly TN, Singh-Manoux A, Dugravot A, Brunner EJ, Kivimaki M, Sabia S. Association of midlife diet with subsequent risk for dementia. JAMA. 2019;321(10):957–68. https://doi.org/10.1001/jama.2019.1432.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35(Suppl 2):S74–8. https://doi.org/10.1016/j.neurobiolaging.2014.03.033.

    Article  PubMed  Google Scholar 

  4. Brickman AM, Khan UA, Provenzano FA, et al. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci. 2014;17(12):1798–803. https://doi.org/10.1038/nn.3850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Charisis S, Ntanasi E, Yannakoulia M, et al. Diet inflammatory index and dementia incidence: a population-based study. Neurology. 2021;97(24):e2381–91. https://doi.org/10.1212/WNL.0000000000012973.

    Article  CAS  PubMed  Google Scholar 

  6. Dearborn-Tomazos JL, Wu A, Steffen LM, et al. Association of dietary patterns in midlife and cognitive function in later life in US adults without dementia. JAMA Netw Open. 2019;2(12): e1916641. https://doi.org/10.1001/jamanetworkopen.2019.16641.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Douaud G, Refsum H, de Jager CA, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci USA. 2013;110(23):9523–8. https://doi.org/10.1073/pnas.1301816110.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Durga J, van Boxtel MP, Schouten EG, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208–16. https://doi.org/10.1016/S0140-6736(07)60109-3.

    Article  CAS  PubMed  Google Scholar 

  9. Ford AH, Almeida OP. Effect of homocysteine lowering treatment on cognitive function: a systematic review and meta-analysis of randomized controlled trials. J Alzheimers Dis. 2012;29(1):133–49. https://doi.org/10.3233/JAD-2012-111739.

    Article  CAS  PubMed  Google Scholar 

  10. Geleijnse JM, Giltay EJ, Kromhout D. Effects of n-3 fatty acids on cognitive decline: a randomized, double-blind, placebo-controlled trial in stable myocardial infarction patients. Alzheimers Dement. 2012;8(4):278–87. https://doi.org/10.1016/j.jalz.2011.06.002.

    Article  CAS  PubMed  Google Scholar 

  11. Gu Y, Nieves JW, Stern Y, Luchsinger JA, Scarmeas N. Food combination and Alzheimer disease risk: a protective diet. Arch Neurol. 2010;67(6):699–706. https://doi.org/10.1001/archneurol.2010.84.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gustafson DR, Backman K, Scarmeas N, et al. Dietary fatty acids and risk of Alzheimer’s disease and related dementias: observations from the Washington Heights-Hamilton Heights-Inwood Columbia Aging Project (WHICAP). Alzheimers Dement. 2020;16(12):1638–49. https://doi.org/10.1002/alz.12154.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Koch M, Dhana K, Jensen MK. Antioxidants and risk of dementia: recent insights and future opportunities. Curr Opin Lipidol. 2018;29(5):424–5. https://doi.org/10.1097/MOL.0000000000000544.

    Article  CAS  PubMed  Google Scholar 

  14. Koch M, Furtado JD, Cronje HT, et al. Plasma antioxidants and risk of dementia in older adults. Alzheimers Dement (N Y). 2021;7(1): e12208. https://doi.org/10.1002/trc2.12208.

    Article  Google Scholar 

  15. Lehtisalo J, Levalahti E, Lindstrom J, et al. Dietary changes and cognition over 2 years within a multidomain intervention trial-The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Dement. 2019;15(3):410–7. https://doi.org/10.1016/j.jalz.2018.10.001.

    Article  PubMed  Google Scholar 

  16. McEvoy CT, Hoang T, Sidney S, et al. Dietary patterns during adulthood and cognitive performance in midlife: the CARDIA study. Neurology. 2019;92(14):e1589–99. https://doi.org/10.1212/WNL.0000000000007243.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Fish consumption and cognitive decline with age in a large community study. Arch Neurol. 2005;62(12):1849–53. https://doi.org/10.1001/archneur.62.12.noc50161.

    Article  PubMed  Google Scholar 

  18. Szczerba E, Koch M, Schlesinger S. Soy consumption, cognitive function, and dementia. Curr Opin Lipidol. 2022;33(1):68–75. https://doi.org/10.1097/MOL.0000000000000807.

    Article  CAS  PubMed  Google Scholar 

  19. Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. 2015;175(7):1094–103. https://doi.org/10.1001/jamainternmed.2015.1668.

    Article  PubMed  Google Scholar 

  20. Rosenbaum M, Leibel RL, Hirsch J. Obesity. N Engl J Med. 1997;337(6):396–407. https://doi.org/10.1056/NEJM199708073370606.

    Article  CAS  PubMed  Google Scholar 

  21. Bray GA, Smith SR, de Jonge L, et al. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: a randomized controlled trial. JAMA. 2012;307(1):47–55. https://doi.org/10.1001/jama.2011.1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katan MB, Ludwig DS. Extra calories cause weight gain–but how much? JAMA. 2010;303(1):65–6. https://doi.org/10.1001/jama.2009.1912.

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL. Is the energy homeostasis system inherently biased toward weight gain? Diabetes. 2003;52(2):232–8. https://doi.org/10.2337/diabetes.52.2.232.

    Article  CAS  PubMed  Google Scholar 

  24. Hill JO. Can a small-changes approach help address the obesity epidemic? a report of the joint task force of the american society for nutrition, institute of food technologists, and international food information council. Am J Clin Nutr. 2009;89(2):477–84. https://doi.org/10.3945/ajcn.2008.26566.

    Article  CAS  PubMed  Google Scholar 

  25. Wang YC, Gortmaker SL, Sobol AM, Kuntz KM. Estimating the energy gap among US children: a counterfactual approach. Pediatrics. 2006;118(6):e1721–33. https://doi.org/10.1542/peds.2006-0682.

    Article  PubMed  Google Scholar 

  26. Gregory MA, Gill DP, Petrella RJ. Brain health and exercise in older adults. Curr Sports Med Rep. 2013;12(4):256–71. https://doi.org/10.1249/JSR.0b013e31829a74fd.

    Article  PubMed  Google Scholar 

  27. Colcombe SJ, Kramer AF, McAuley E, Erickson KI, Scalf P. Neurocognitive aging and cardiovascular fitness: recent findings and future directions. J Mol Neurosci. 2004;24(1):9–14. https://doi.org/10.1385/JMN:24:1:009.

    Article  CAS  PubMed  Google Scholar 

  28. Lafortune L, Martin S, Kelly S, Kuhn I, Cowan A, Brayne C. disability, dementia and frailty in laterlife: mid-life approaches to prevent or delay the onsetof these conditions. United Kingdom2014.

  29. Koch M, Jensen MK. Body mass index and risk of dementia. Curr Opin Lipidol. 2018;29(1):49–50. https://doi.org/10.1097/MOL.0000000000000478.

    Article  CAS  PubMed  Google Scholar 

  30. Zeki Al Hazzouri A, Vittinghoff E, Hoang T, et al. Body mass index in early adulthood and dementia in late life: findings from a pooled cohort. Alzheimers Dement. 2021;17(11):1798–807. https://doi.org/10.1002/alz.12367.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48. https://doi.org/10.1038/ng.686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bell JA, Carslake D, O’Keeffe LM, et al. Associations of body mass and fat indexes with cardiometabolic traits. J Am Coll Cardiol. 2018;72(24):3142–54. https://doi.org/10.1016/j.jacc.2018.09.066.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zeng H, Lin C, Wang S, Zheng Y, Gao X. Genetically predicted body composition in relation to cardiometabolic traits: a Mendelian randomization study. Eur J Epidemiol. 2021;36(11):1157–68. https://doi.org/10.1007/s10654-021-00779-9.

    Article  CAS  PubMed  Google Scholar 

  34. Samieri C, Morris MC, Bennett DA, et al. Fish intake, genetic predisposition to Alzheimer disease, and decline in global cognition and memory in 5 cohorts of older persons. Am J Epidemiol. 2018;187(5):933–40. https://doi.org/10.1093/aje/kwx330.

    Article  PubMed  Google Scholar 

  35. Elks CE, den Hoed M, Zhao JH, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol (Lausanne). 2012;3:29. https://doi.org/10.3389/fendo.2012.00029.

    Article  Google Scholar 

  36. Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23(2):120–33. https://doi.org/10.1038/s41576-021-00414-z.

    Article  CAS  PubMed  Google Scholar 

  37. Khera AV, Chaffin M, Wade KH, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell. 2019;177(3):587-96 e9. https://doi.org/10.1016/j.cell.2019.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malik VS, Willet WC, Hu FB. Nearly a decade on—trends, risk factors and policy implications in global obesity. Nat Rev Endocrinol. 2020;16(11):615–6. https://doi.org/10.1038/s41574-020-00411-y.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Patikorn C, Roubal K, Veettil SK, et al. Intermittent fasting and obesity-related health outcomes: an umbrella review of meta-analyses of randomized clinical trials. JAMA Netw Open. 2021;4(12): e2139558. https://doi.org/10.1001/jamanetworkopen.2021.39558.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kuller LH, Snitz BE, Hughes TM, et al. Low untreated systolic blood pressure over 18 years is associated with survival free of dementia age 90+. Alzheimers Dement. 2022 (in press).

  41. Janelidze S, Palmqvist S, Leuzy A, et al. Detecting amyloid positivity in early Alzheimer disesae using plasma biomarkers. Alzheimers Dement. 2021;17(Suppl 5):e052117.

    Google Scholar 

  42. Gonzalez MC, Ashton NJ, Gomes BF, et al. Association of plasma p-tau181 and p-tau231 concentrations with cognitive decline in patients with probable dementia with lewy bodies. JAMA Neurol. 2022;79(1):32–7. https://doi.org/10.1001/jamaneurol.2021.4222.

    Article  PubMed  Google Scholar 

  43. Pereira JB, Janelidze S, Smith R, et al. Plasma glial fibrillary acidic protein is an early and specific marker of amyloid-B pathology in Alzheimer’s disease. Alzheimers Dement. 2021;17(Suppl 5):e055538.

    Google Scholar 

  44. Coors A, Boenniger MM, Santos M, et al. Associations of plasma neurofilament light protein levels with cognitive functions and brain structure parameters. Alzheimers Dement. 2021;17(Suppl 5):e055922.

    Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis H. Kuller.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuller, L.H. Subjective cognitive decline and total energy intake: Talk too much?. Eur J Epidemiol 37, 129–131 (2022). https://doi.org/10.1007/s10654-022-00849-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-022-00849-6

Keywords

Navigation