Skip to main content

Advertisement

Log in

Development and Characterization of Viburnum opulus L. Extract-Loaded Orodispersible Films: Potential Route of Administration for Phytochemicals

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Viburnum opulus L. fruits have been used in traditional medicine in the Turkish population for kidney problems, hypoglycemic and cough relaxant activities. This study aimed to prepare V. opulus extract-loaded orally disintegrating films (ODFs) to enhance oral absorption and improve patient compliance.

Methods

ODF formulations were prepared using the solvent casting method. Carboxymethyl cellulose (0.5%, 1%, 1.5% w/w) and chitosan (0.5%, 1%, 1.5% w/w) were selected as film-forming polymers and glycerol was utilized as a plasticizer. Chlorogenic acid is the major metabolite of V. opulus fruits. The chlorogenic acid content in formulations and the plant extract was measured using high-performance thin-layer chromatography (HPTLC). Characterization studies on the formulations such as elongation at break, tensile strength, Young’s modulus, DSC, SEM, and FT-IR were conducted. Bioadhesion, in vitro disintegration, and in vitro release studies were performed.

Results

Desired mechanical and morphological properties were obtained for ODFs. Disintegration times (15.38 ± 0.88 s) and release studies (85.19% at 30 min) showed that the 0.5% chitosan films were the most convenient formulation for delivering V. opulus extract.

Conclusion

ODFs were evaluated as a smart delivery route for phytochemicals avoiding any gastrointestinal effects and enhancing oral absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv. 2011;8(3):299–316. https://doi.org/10.1517/17425247.2011.553217.

    Article  CAS  PubMed  Google Scholar 

  2. Lee Y, Kim K, Kim M, Choi DH, Jeong SH. Orally disintegrating films focusing on formulation, manufacturing process, and characterization. J Pharm Investig. 2017;47(3):183–201. https://doi.org/10.1007/s40005-017-0311-2.

    Article  CAS  Google Scholar 

  3. Dixit RP, Puthli SP. Oral strip technology: Overview and future potential. J Control Release. 2009;139(2):94–107. https://doi.org/10.1016/j.jconrel.2009.06.014.

    Article  CAS  PubMed  Google Scholar 

  4. Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm. 2020;576: 118963. https://doi.org/10.1016/j.ijpharm.2019.118963.

    Article  CAS  PubMed  Google Scholar 

  5. Alaei S, Omidian H. Mucoadhesion and mechanical assessment of oral films. Eur J Pharm Sci. 2021;159: 105727. https://doi.org/10.1016/j.ejps.2021.105727.

    Article  CAS  PubMed  Google Scholar 

  6. Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN. Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int. 2009;42(7):762–9. https://doi.org/10.1016/j.foodres.2009.02.026.

    Article  CAS  Google Scholar 

  7. Mazzarino L, Borsali R, Lemos-Senna E. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release. J Pharm Sci. 2014;103(11):3764–71. https://doi.org/10.1002/jps.24142.

    Article  CAS  PubMed  Google Scholar 

  8. Lv Q, Shen C, Li X, Shen B, Yu C, Xu P, et al. Mucoadhesive buccal films containing phospholipid-bile salts-mixed micelles as an effective carrier for Cucurbitacin B delivery. Drug Deliv. 2015;22(3):351–8. https://doi.org/10.3109/10717544.2013.876459.

    Article  CAS  PubMed  Google Scholar 

  9. Ansari M, Sadarani B, Majumdar A. Optimization and evaluation of mucoadhesive buccal films loaded with resveratrol. J Drug Deliv Sci Technol. 2018;44:278–88. https://doi.org/10.1016/j.jddst.2017.12.007.

    Article  CAS  Google Scholar 

  10. Santana de Freitas-Blanco V, Franz-Montan M, Groppo FC, de Carvalho JE, Figueira GM, Serpe L, et al. Development and Evaluation of a Novel Mucoadhesive Film Containing Acmella oleracea Extract for Oral Mucosa Topical Anesthesia. PLoS One. 2016;11(9):e0162850. https://doi.org/10.1371/journal.pone.0162850.

  11. Bodini RB, Pugine SMP, de Melo MP, de Carvalho RA. Antioxidant and anti-inflammatory properties of orally disintegrating films based on starch and hydroxypropyl methylcellulose incorporated with Cordia verbenacea (erva baleeira) extract. Int J Biol Macromol. 2020;159:714–24. https://doi.org/10.1016/j.ijbiomac.2020.05.075.

    Article  CAS  PubMed  Google Scholar 

  12. Tedesco MP, Monaco-Lourenço CA, Carvalho RA. Characterization of oral disintegrating film of peanut skin extract—Potential route for buccal delivery of phenolic compounds. Int J Biol Macromol. 2017;97:418–25. https://doi.org/10.1016/j.ijbiomac.2017.01.044.

    Article  CAS  PubMed  Google Scholar 

  13. Macit M, Eyupoglu OE, Macit C, Duman G. Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. J Drug Deliv Sci Technol. 2021;64: 102605. https://doi.org/10.1016/j.jddst.2021.102605.

    Article  CAS  Google Scholar 

  14. Visser JC, Eugresya G, Hinrichs WLJ, Tjandrawinata RR, Avanti C, Frijlink HW, et al. Development of orodispersible films with selected Indonesian medicinal plant extracts. J Herb Med. 2017;7:37–46. https://doi.org/10.1016/j.hermed.2016.10.002.

    Article  Google Scholar 

  15. Altundag E, Ozturk M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia Soc Behav Sci. 2011;19:756–77. https://doi.org/10.1016/j.sbspro.2011.05.195.

    Article  Google Scholar 

  16. Sagdic O, Aksoy A, Ozkan G. Evaluation of the antibacterial and antioxidant potentials of cranberry (gilaburu, Viburnum opulus L.) fruit extract. Acta Alimentaria. 2006;35:487–92. https://doi.org/10.1556/AAlim.35.2006.4.12.

  17. Ersoy N, Ercisli S, Gundogdu M. Evaluation of European Cranberrybush (Viburnum opulus L.) genotypes for agro-morphological, biochemical and bioactive characteristics in Turkey. Folia Horticult. 2017;29(2):181–8. https://doi.org/10.1515/fhort-2017-0017.

  18. Sarıözkan S, Türk G, Eken A, Bayram LÇ, Baldemir A, Doğan G. Gilaburu (Viburnum opulus L.) fruit extract alleviates testis and sperm damages induced by taxane-based chemotherapeutics. Biomed Pharmacother. 2017;95:1284–94. https://doi.org/10.1016/j.biopha.2017.09.057.

  19. İlhan M, Ergene B, Süntar I, Özbilgin S, Saltan Çitoğlu G, Demirel MA, et al. Preclinical Evaluation of Antiurolithiatic Activity of Viburnum opulus L. on Sodium Oxalate-Induced Urolithiasis Rat Model. Evi Based Comple Alter Med. 2014;2014:578103. https://doi.org/10.1155/2014/578103.

  20. Eken A, Yucel O, Bosgelmez II, Baldemir A, Cubuk S, Cermik AH, et al. An Investigation on Protective Effect of Viburnum opulus L. Fruit Extract Against Ischemia/Reperfusion-Induced Oxidative Stress after Lung Transplantation in Rats. Kafkas Univ Vet Fak. 2017;23(3):437–44. https://doi.org/10.9775/kvfd.2016.16964.

  21. Oral RA, Doğan M, Sarioğlu K. Recovery of bioactive phenolic compounds from olive mill waste water, pomegranate peel, and European cranberrybush (Viburnum opulus L.) juice by preparative MPLC. J Liq Chromatograp Rel Technol. 2014;37(13):1827–36. https://doi.org/10.1080/10826076.2013.825843.

  22. Barak TH, Celep E, İnan Y, Yesilada E. Influence of in vitro human digestion on the bioavailability of phenolic content and antioxidant activity of Viburnum opulus L. (European cranberry) fruit extracts. Indust Crops Prod. 2019;131:62–9. https://doi.org/10.1016/j.indcrop.2019.01.037.

  23. Chen GL, Chen SG, Zhao YY, Luo CX, Li J, Gao YQ. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind Crops Prod. 2014;57:150–7. https://doi.org/10.1016/j.indcrop.2014.03.018.

    Article  CAS  Google Scholar 

  24. Bardakci H, Celep E, Gözet T, Kan Y, Kırmızıbekmez H. Phytochemical characterization and antioxidant activities of the fruit extracts of several Crataegus taxa. S Afr J Bot. 2019;124:5–13. https://doi.org/10.1016/j.sajb.2019.04.012.

    Article  CAS  Google Scholar 

  25. Aksungur P, Sungur A, Ünal S, İskit AB, Squier CA, Şenel S. Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. J Control Release. 2004;98(2):269–79. https://doi.org/10.1016/j.jconrel.2004.05.002.

    Article  CAS  PubMed  Google Scholar 

  26. Nawab A, Alam F, Haq MA, Lutfi Z, Hasnain A. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties. Int J Biol Macromol. 2017;98:869–76. https://doi.org/10.1016/j.ijbiomac.2017.02.054.

    Article  CAS  PubMed  Google Scholar 

  27. Borges JG, Silva AG, Cervi-Bitencourt CM, Vanin FM, Carvalho RA. Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties. Int J Biol Macromol. 2016;86:907–16. https://doi.org/10.1016/j.ijbiomac.2016.01.089.

    Article  CAS  PubMed  Google Scholar 

  28. Tuğcu-Demiröz F, Acartürk F, Erdoğan D. Development of long-acting bioadhesive vaginal gels of oxybutynin: Formulation, in vitro and in vivo evaluations. Int J Pharm. 2013;457(1):25–39. https://doi.org/10.1016/j.ijpharm.2013.09.003.

    Article  CAS  PubMed  Google Scholar 

  29. Senthilkumar K, Vijaya C. Formulation development of mouth dissolving film of etoricoxib for pain management. Adv Pharmaceut. 2015;2015: 702963. https://doi.org/10.1155/2015/702963.

    Article  Google Scholar 

  30. Łyszczarz E, Brniak W, Szafraniec-Szczęsny J, Majka TM, Majda D, Zych M, et al. The impact of the preparation method on the properties of orodispersible films with aripiprazole: electrospinning vs. casting and 3D printing methods. Pharmaceutics. 2021;13(8):1122.

  31. Cardelle-Cobas A, Madureira AR, Costa E, Barros R, Tavaria FK, Pintado ME. Development of oral strips containing chitosan as active ingredient: a product for buccal health. Int J Polym Mater Polym Biomater. 2015;64(17):906–18. https://doi.org/10.1080/00914037.2015.1030661.

    Article  CAS  Google Scholar 

  32. Scarpa M, Paudel A, Kloprogge F, Hsiao WK, Bresciani M, Gaisford S, et al. Key acceptability attributes of orodispersible films. Europ J Pharmaceut Biopharmaceut: Offi J Arbeitsgemeinsch fur Pharmazeut Verfahrenstech eV. 2018;125:131–40. https://doi.org/10.1016/j.ejpb.2018.01.003.

    Article  CAS  Google Scholar 

  33. Kim S, Cho DH, Kweon DK, Jang EH, Hong JY, Lim ST. Improvement of mechanical properties of orodispersible hyaluronic acid film by carboxymethyl cellulose addition. Food Sci Biotechnol. 2020;29(9):1233–9. https://doi.org/10.1007/s10068-020-00771-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Banker GS. Film coating theory and practice. J Pharm Sci. 1966;55(1):81–9. https://doi.org/10.1002/jps.2600550118.

    Article  CAS  PubMed  Google Scholar 

  35. Khazaei N, Esmaiili M, Djomeh ZE, Ghasemlou M, Jouki M. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr Polym. 2014;102:199–206. https://doi.org/10.1016/j.carbpol.2013.10.062.

  36. Cao L, Liu W, Wang L. Developing a green and edible film from Cassia gum: The effects of glycerol and sorbitol. J Clean Prod. 2018;175:276–82. https://doi.org/10.1016/j.jclepro.2017.12.064.

    Article  CAS  Google Scholar 

  37. Ghosal K, Ranjan A, Bhowmik BB. A novel vaginal drug delivery system: anti-HIV bioadhesive film containing abacavir. J Mater Sci - Mater Med. 2014;25(7):1679–89. https://doi.org/10.1007/s10856-014-5204-6.

    Article  CAS  PubMed  Google Scholar 

  38. Bassi P, Kaur G. Polymeric films as a promising carrier for bioadhesive drug delivery: Development, characterization and optimization. Saudi Pharmaceut J. 2017;25(1):32–43. https://doi.org/10.1016/j.jsps.2015.06.003.

    Article  PubMed  Google Scholar 

  39. Avachat AM, Gujar KN, Wagh KV. Development and evaluation of tamarind seed xyloglucan-based mucoadhesive buccal films of rizatriptan benzoate. Carbohydr Polym. 2013;91(2):537–42. https://doi.org/10.1016/j.carbpol.2012.08.062.

    Article  CAS  PubMed  Google Scholar 

  40. Belay A, Kim HK, Hwang Y-H. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching. UV/vis and FTIR spectroscopic techniques Luminescence. 2016;31(2):565–72. https://doi.org/10.1002/bio.2996.

    Article  CAS  PubMed  Google Scholar 

  41. Moldovan B, David L, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, et al. In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Mater Sci Engi C Mater Biolog App. 2017;79:720–7. https://doi.org/10.1016/j.msec.2017.05.122.

  42. Akhtar HMS, Riaz A, Hamed YS, Abdin M, Chen G, Wan P, et al. Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. Int J Biol Macromol. 2018;118(Pt A):469–77. https://doi.org/10.1016/j.ijbiomac.2018.06.090.

    Article  CAS  PubMed  Google Scholar 

  43. Simsek M, Eke B, Demir H. Characterization of carboxymethyl cellulose-based antimicrobial films incorporated with plant essential oils. Int J Biol Macromol. 2020;163:2172–9. https://doi.org/10.1016/j.ijbiomac.2020.09.075.

    Article  CAS  PubMed  Google Scholar 

  44. Yilmaz P, Demirhan E, Ozbek B. Development of Ficus carica Linn leaves extract incorporated chitosan films for active food packaging materials and investigation of their properties. Food Biosci. 2022;46: 101542. https://doi.org/10.1016/j.fbio.2021.101542.

    Article  CAS  Google Scholar 

  45. Nguyen TT, Dao UT, Bui QP, Bach GL, Thuc CH, Thuc HH. Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract. Prog Org Coat. 2020;140:105487. https://doi.org/10.1016/j.porgcoat.2019.105487.

  46. Jayaramudu T, Raghavendra GM, Varaprasad K, Reddy GVS, Reddy AB, Sudhakar K, et al. Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process. J App Polym Sci. 2016;133(7). https://doi.org/10.1002/app.43027.

  47. El-Sayed S, Mahmoud KH, Fatah AA, Hassen A. DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B. 2011;406(21):4068–76. https://doi.org/10.1016/j.physb.2011.07.050.

    Article  CAS  Google Scholar 

  48. Altınışık A, Seki Y, Yurdakoç K. Preparation and characterization of chitosan/KSF biocomposite film. Polym Compos. 2009;30(8):1035–42. https://doi.org/10.1002/pc.20651.

    Article  CAS  Google Scholar 

  49. European Pharmacopoeia 8 th Edition. Orodispersible tablets. Strasbourg: Directorate for the quality of medicines & health care of the council of Europe. 2013:p. 811.

  50. Takeuchi Y, Umemura K, Tahara K, Takeuchi H. Formulation design of hydroxypropyl cellulose films for use as orally disintegrating dosage forms. J Drug Deliv Sci Technol. 2018;46:93–100. https://doi.org/10.1016/j.jddst.2018.05.002.

    Article  CAS  Google Scholar 

  51. Scarpa M, Paudel A, Kloprogge F, Hsiao WK, Bresciani M, Gaisford S, et al. Key acceptability attributes of orodispersible films. Eur J Pharm Biopharm. 2018;125:131–40. https://doi.org/10.1016/j.ejpb.2018.01.003.

    Article  CAS  PubMed  Google Scholar 

  52. The United States Pharmacopeia (USP) 41 National Formulary (NF) 36. Apparatus 5 (Paddle over Disk). Baltimore, United States. Uni Stat Pharmacop Convent. 2018:p. 6471–4.

  53. Abdul Rasool B, Abu-Gharbieh E, Awni R, Rasool A. In vitro release study of nystatin from chitosan buccal gel. Jord J Pharmaceut Sci. 2010;3:2010–44.

    Google Scholar 

  54. Meher JG, Tarai M, Patnaik A, Mishra P, Yadav NP. Cellulose buccoadhesive film bearing glimepiride: physicomechanical characterization and biophysics of buccoadhesion. AAPS PharmSciTech. 2016;17(4):940–50. https://doi.org/10.1208/s12249-015-0419-5.

    Article  CAS  PubMed  Google Scholar 

  55. Peppas NA, Narasimhan B. Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release. 2014;190:75–81. https://doi.org/10.1016/j.jconrel.2014.06.041.

    Article  CAS  PubMed  Google Scholar 

  56. Bruschi ML. Strategies to modify the drug release from pharmaceutical systems. Woodhead: Publishing; 2015:p. 63–86.

    Google Scholar 

  57. Chang SH, Lin HT, Wu GJ, Tsai GJ. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohyd Polym. 2015;134:74–81. https://doi.org/10.1016/j.carbpol.2015.07.072.

Download references

Acknowledgements

The authors would like to thank Prof. Dr. Serap Arbak for providing the electron microscopy laboratories and also would like to thank Selcuk Birdogan (Ph.D.) for obtaining the SEM images.

Funding

No funding was received for performing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samet Özdemir.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, S., Karaküçük, A., Çakırlı, E. et al. Development and Characterization of Viburnum opulus L. Extract-Loaded Orodispersible Films: Potential Route of Administration for Phytochemicals. J Pharm Innov 18, 90–101 (2023). https://doi.org/10.1007/s12247-022-09627-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09627-z

Keywords

Navigation