Skip to main content
Log in

An investigation on hydro-acoustic characteristics of submerged bodies with different geometric parameters

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Numerical analyses and acoustic experiments were performed to investigate the effects of geometric parameters on the hydro-acoustic characteristics of flow over cylinders with circular, square and rectangular cross sections, respectively. A hybrid method which combines RANS and FWH equations was applied for the numerical analyses. The hydro-acoustic characteristics were obtained for circular cylinders with diameters, \(D = 9.5\), 19.0, 38.0 and 65.0 mm, respectively, and aspect ratios, \(L/D = 2.5\), 5.0 and 10.0. The effects of side-ratio, B/H, on the hydro-acoustic characteristics were investigated for cylinders with rectangular cross sections, for \(B/H = 0.3\), 0.6, 1.0, 1.8 and 3.0, respectively. The range of Reynolds numbers considered for the numerical analyses and experiments is in the range of \(2.25\times 10^{4}\) and \(1.7\times 10^{5}\). It was observed that the hydro-acoustic characteristics are greatly affected by the shear layer separation, reattachment mechanism and intensity disturbances. The noise spectrum strongly depends on the cross-sectional geometry of cylinder. An increase in the side ratio causes the spectrum to be narrower, and the main peak frequency increases with reducing side ratio. At constant Reynolds numbers, the broadband noise level and maximum sound pressure level decrease with decreasing aspect ratio, L/D,  for cylinders with circular cross section. Moreover, the main peak frequency decreases with increasing diameter, whereas aspect ratio has no effect. The increase in diameter results in a decrease in the broadband noise level and the maximum sound pressure level. The numerical predictions were compared with experimental measurements, and a good agreement was found between the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ardic, I.T., Yildizdag, M.E., Ergin, A.: An FE-BE method for the hydroelastic vibration analysis of plates and shells partially in contact with fluid. In: Developments and Novel Approaches in Nonlinear Solid Body Mechanics, pp. 267–300. Springer, Berlin (2020)

    Google Scholar 

  2. Yildizdag, M.E., et al.: Hydroelastic vibration analysis of plates partially submerged in fluid with an isogeometric FE-BE approach. Ocean Eng. 172, 316–329 (2019)

    Google Scholar 

  3. Yildizdag, M.E., et al.: An isogeometric FE-BE method and experimental investigation for the hydroelastic analysis of a horizontal circular cylindrical shell partially filled with fluid. Thin-Walled Struct. 151, 106755 (2020)

    Google Scholar 

  4. Barchiesi, E., Laudato, M., Di Cosmo, F.: Wave dispersion in non-linear pantographic beams. Mech. Res. Commun. 94, 128–132 (2018)

    Google Scholar 

  5. Placidi, L., et al.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Rosi, G., Giorgio, I., Eremeyev, V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Appl. Math. Mech. 93(12), 914–927 (2013)

    MathSciNet  Google Scholar 

  7. Berezovski, A., Yildizdag, M.E., Scerrato, D.: On the wave dispersion in microstructured solids. Continuum Mech. Thermodyn. 32(3), 569–588 (2020)

    MathSciNet  ADS  MATH  Google Scholar 

  8. Abd-alla, A.E.N.N., et al.: A mathematical model for longitudinal wave propagation in a magnetoelastic hollow circular cylinder of anisotropic material under the influence of initial hydrostatic stress. Math. Mech. Solids 21(1), 104–118 (2016)

    MathSciNet  MATH  Google Scholar 

  9. dell’Isola, F., et al.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mech. Thermodyn. 31(4), 1231–1282 (2019)

    ADS  Google Scholar 

  10. Vangelatos, Z., Yildizdag, M.E., Giorgio, I., dell’Isola, F., Grigoropoulos, C.: Investigating the mechanical response of microscale pantographic structures fabricated by multiphoton lithography. Extreme Mech. Lett. 43, 101202 (2021)

    Google Scholar 

  11. Spagnuolo, M., Yildizdag, M.E., Andreaus, U., Cazzani, A.M.: Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? Math. Mech. Solids 26(1), 18–29 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Giorgio, I., dell’Isola, F., Misra, A.: Chirality in 2D cosserat media related to stretch-micro-rotation coupling with links to granular micromechanics. Int. J. Solids Struct. 202, 28–38 (2020)

    Google Scholar 

  13. Giorgio, I.: Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial. Continuum Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-020-00955-4

    Article  Google Scholar 

  14. Volkov, I.A., Igumnov, L.A., Dell’Isola, F., Litvinchuk, S.Y., Eremeyev, V.A.: A continual model of a damaged medium used for analyzing fatigue life of polycrystalline structural alloys under thermal-mechanical loading. Contin. Mech. Thermodyn. 32(1), 229–245 (2020)

    MathSciNet  ADS  Google Scholar 

  15. Barchiesi, E., Dell’Isola, F., Bersani, A.M., Turco, E.: Equilibria determination of elastic articulated duoskelion beams in 2D via a Riks-type algorithm. Int. J. Non-Linear Mech. 128, 103628 (2021)

    ADS  Google Scholar 

  16. Barchiesi, E., Yang, H., Tran, C.A., Placidi, L., Müller, W.H.: Computation of brittle fracture propagation in strain gradient materials by the FEniCS library. Math. Mech. Solids. (2020). https://doi.org/10.1177/1081286520954513

    Article  MATH  Google Scholar 

  17. Barchiesi, E., dell’Isola, F., Hild, F.: On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation. Int. J. Solids Struct. 208, 49–62 (2021)

    Google Scholar 

  18. Barchiesi, E., Harsch, J., Ganzosch, G., Eugster, S.R.: Discrete versus homogenized continuum modeling in finite deformation bias extension test of bi-pantographic fabrics. Contin. Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-020-00917-w

    Article  Google Scholar 

  19. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–234 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Yildizdag, M.E., et al.: A multi-disciplinary approach for mechanical metamaterial synthesis: a hierarchical modular multiscale cellular structure paradigm. In: State of the Art and Future Trends in Material Modeling, pp. 485–505. Springer, Berlin (2019)

    Google Scholar 

  21. Carlton, J.S., Vlasic, D.: Ship vibration and noise: Some topical aspects. in 1st International Ship Noise and Vibration Conference (2005)

  22. Murphy, E., King, E.: Environmental noise pollution: Noise mapping, public health, and policy. 2014: Newnes

  23. Goldburg, A., Florsheim, B.H.: Transition and Strouhal number for the incompressible wake of various bodies. Phys. Fluids 9(1), 45–50 (1966)

    ADS  Google Scholar 

  24. Ozgoren, M.: Flow structure in the downstream of square and circular cylinders. Flow Meas. Instrum. 17(4), 225–235 (2006)

    Google Scholar 

  25. Tamura, T., Miyagi, T.: The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes. J. Wind Eng. Ind. Aerodyn. 83(1–3), 135–145 (1999)

    Google Scholar 

  26. Lighthill, M.J.: On sound generated aerodynamically I. General theory. In Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. London (1952)

  27. Proudman, I.: The generation of noise by isotropic turbulence. Proc. R. Soc. Lond. 214(1116), 119–132 (1952)

    MathSciNet  ADS  MATH  Google Scholar 

  28. Curle, N.: The influence of solid boundaries upon aerodynamic sound. In Proceedings of the Royal Society of London. Series A: mathematical and physical sciences (1955)

  29. Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philosoph. Trans. R. Soc. London. Ser. A Math. 264(1151), 321–342 (1969)

    ADS  MATH  Google Scholar 

  30. Brentner, K.S., Farassat, F.: Modeling aerodynamically generated sound of helicopter rotors. Prog. Aerosp. Sci. 39(2–3), 83–120 (2003)

    Google Scholar 

  31. Farassat, F.: Derivation of Formulations 1 and 1A of Farassat, NASA, Editor (2007)

  32. Farassat, F., Succi, G.P.: The prediction of helicopter rotor discrete frequency noise. Vertica 7(4), 309–320 (1983)

    Google Scholar 

  33. Bagheri, M.R., et al.: Analysis of noise behaviour for marine propellers under cavitating and non-cavitating conditions. Ships Offshore Struct. 12(1), 1–8 (2017)

    Google Scholar 

  34. Ianniello, S.: The Ffowcs Williams-Hawkings equation for hydroacoustic analysis of rotating blades: Part 1—the rotpole. J Fluid Mech 797, 345–388 (2016)

    MathSciNet  ADS  MATH  Google Scholar 

  35. Ianniello, S., De Bernardis, E.: Farassat’s formulations in marine propeller hydroacoustics. Int. J. Aeroacoust. 14(1–2), 87–103 (2015)

    Google Scholar 

  36. Testa, C., Ianniello, S., Salvatore, F.: A Ffowcs Williams and Hawkings formulation for hydroacoustic analysis of propeller sheet cavitation. J. Sound Vib. 413, 421–441 (2018)

    ADS  Google Scholar 

  37. Cox, J.S., et al.: Computation of sound generated by viscous flow over a circular cylinder (1997)

  38. Sohankar, A.: Large eddy simulation of flow past rectangular-section cylinders: side ratio effects. J. Wind Eng. Ind. Aerodyn. 96(5), 640–655 (2008)

    Google Scholar 

  39. Gloerfelt, X., et al.: Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers. J. Sound Vib. 287(1–2), 129–151 (2005)

    ADS  Google Scholar 

  40. Zhang, C., Sanjose, M., Moreau, S.: Aeolian noise of a cylinder in the critical regime. J. Acoust. Soc. Am. 146(2), 1404–1415 (2019)

    ADS  Google Scholar 

  41. Porteous, R., Moreau, D.J., Doolan, C.J.: The aeroacoustics of finite wall-mounted square cylinders. J. Fluid Mech. 832, 287–328 (2017)

    ADS  Google Scholar 

  42. Moreau, D.J., Doolan, C.J.: Flow-induced sound of wall-mounted finite length cylinders. AIAA J. 51(10), 2493–2502 (2013)

    ADS  Google Scholar 

  43. Wang, Y., Thompson, D., Hu, Z.: Numerical investigations on the flow over cuboids with different aspect ratios and the emitted noise. Phys. Fluids 32(2), 025103 (2020)

    ADS  Google Scholar 

  44. Bearman, P.W., Trueman, D.M.: An investigation of the flow around rectangular cylinders. Aero. Q. 23(3), 229–237 (1972)

    Google Scholar 

  45. Choi, W.S., et al.: Turbulence-induced noise of a submerged cylinder using a permeable FW-H method. Int. J. Naval Arch. Ocean Eng. 8(3), 235–242 (2016)

    Google Scholar 

  46. Choi, Y.S., et al.: Development of formulation Q1As method for quadrupole noise prediction around a submerged cylinder. Int. J. Naval Arch. Ocean Eng. 9(5), 484–491 (2017)

    Google Scholar 

  47. Brentner, K.S.: An efficient and robust method for predicting helicopter high-speed impulsive noise. J. Sound Vib. 203(1), 87–100 (1997)

    ADS  Google Scholar 

  48. Cianferra, M., Armenio, V., Ianniello, S.: Hydroacoustic noise from different geometries. Int. J. Heat Fluid Flow 70, 348–362 (2018)

    Google Scholar 

  49. Cianferra, M., Ianniello, S., Armenio, V.: Assessment of methodologies for the solution of the Ffowcs Williams and Hawkings equation using LES of incompressible single-phase flow around a finite-size square cylinder. J. Sound Vib. 453, 1–24 (2019)

    ADS  Google Scholar 

  50. Ergin, S., Bulut, S.: Estimating flow-induced noise of a circular cylinder using numerical and analytical acoustic methods. In: Proc. of developments in maritime transportation harvesting of sea resources IMAM p. 355–363 (2017)

  51. Ergin, S., Bulut, S.: Three-dimensional numerical investigation of flow noise around a circular cylinder. TEAM (2018)

  52. Bulut, S., Ergin, S.: An investigation on the effects of various flow parameters on the underwater flow noise. In: Technology and science for the ships of the future: proceedings of nav: 19th international conference on ship & maritime research (2018)

  53. Bulut, S., Ergin, S.: Effects of temperature, salinity, and fluid type on acoustic characteristics of turbulent flow around circular cylinder. J. Marine Sci. Appl. (2020). https://doi.org/10.1007/s11804-021-00197-z

    Article  Google Scholar 

  54. Bulut, S., Ergin, S.: Investigation of flow noise with different turbulence models. In: sustainable development and innovations in marine technologies: proceedings of imam: 18th international congress of the maritime association of the mediterranean (2020)

  55. Bulut, S., Ergin, S.: Numerical investigation of geometrical parameters on the hydrodynamic noise characteristics of submerged bodies and comparisons with experiments. In: Proceedings of the Institution of Mechanical Engineers, Part M: J. Eng. Maritime Environ. 1475090220962246 (2020)

  56. Siemens, P. L. M.: STAR-CCM+ Documentation. Siemens PLM Software Inc, 12 (2017)

  57. Wilcox, D.C.: Formulation of the kw turbulence model revisited. AIAA J. 46(11), 2823–2838 (2008)

    ADS  Google Scholar 

  58. Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15(2), 301–314 (1972)

    Google Scholar 

  59. Launder, B.E., Sharma, B.I.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf 1(2), 131–137 (1974)

    ADS  Google Scholar 

  60. Menter, F.R.: 2-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    ADS  Google Scholar 

  61. Brentner, K.S., Farassat, F.: Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA J. 36(8), 1379–1386 (1998)

    ADS  Google Scholar 

  62. Casalino, D.: An advanced time approach for acoustic analogy predictions. J. Sound Vib. 261(4), 583–612 (2003)

    ADS  Google Scholar 

  63. Lehmkuhl, O., et al.: Unsteady forces on a circular cylinder at critical Reynolds numbers. Phys. Fluids 26(12), 125110 (2014)

    ADS  Google Scholar 

  64. Patankar, S.V.: Numerical heat transfer and fluid flow, Hemisphere Publ, vol. 58. Hemisphere Publ. Corp., New York (1980)

    Google Scholar 

  65. Travin, A., et al.: Detached-eddy simulations past a circular cylinder. Flow Turbul. Combust. 63(1–4), 293–313 (2000)

    MATH  Google Scholar 

  66. Celik, I.B., et al.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130(78001) (2008)

  67. Felli, M.: Noise measurements techniques and hydrodynamic aspects related to cavitation noise. Hydro Testing Alliance, 31316 (2006)

  68. Pereira, F.A., Di Felice, F., Salvatore, F.: Propeller cavitation in non-uniform flow and correlation with the near pressure field. J. Marine Sci. Eng. 4(4), 70 (2016)

    Google Scholar 

  69. De Jong, C.A.F., Ainslie, M.A., Blacquière, G.: Standard for measurement and monitoring of underwater noise, Part II: procedures for measuring underwater noise in connection with offshore wind farm licensing (2011)

  70. ITTC, Recommended procedures and guidelines: model Scale Noise Measurements. (2013)

  71. Kato, C., et al.: Numerical prediction of sound generated from flows with a low Mach number. Comput. Fluids 36(1), 53–68 (2007)

    MATH  Google Scholar 

  72. Norberg, C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17(1), 57–96 (2003)

    ADS  Google Scholar 

  73. Mendonça, F., et al.: CFD prediction of narrowband and broadband cavity acoustics at M\(=\) 0.85. in 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. (2003)

  74. Rossiter, J.: Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. 1964, Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough

  75. Nakaguchi, H., Hashimoto, K., Muto, S.: An experimental study on aerodynamic drag of rectangular cylinders. Jpn. Soc. Aero. Eng. 16(168), 1–5 (1968)

    Google Scholar 

  76. Norberg, C.: Flow around rectangular cylinders: pressure forces and wake frequencies. J. Wind Eng. Ind. Aerodyn. 49(1–3), 187–196 (1993)

    Google Scholar 

  77. Mizota, T., et al.: Aerodynamic characteristics of fundamental structures (Part 1). J. Wind. Eng. 1988(36), 50–79 (1988)

    Google Scholar 

  78. Blake, W.K.: Mechanics of flow-induced sound and vibration volume? (1986)

  79. Octavianty, R., Asai, M., Inasawa, A.: Experimental study on vortex shedding and sound radiation from a rectangular cylinder at low mach numbers. Trans. Jpn. Soc. Aero. Space Sci. 59(5), 261–268 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Ergin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulut, S., Ergin, S. An investigation on hydro-acoustic characteristics of submerged bodies with different geometric parameters. Continuum Mech. Thermodyn. 35, 1123–1146 (2023). https://doi.org/10.1007/s00161-022-01086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01086-8

Keywords

Navigation