Skip to main content
Log in

Spinorial Representation of Surfaces in Lorentzian Homogeneous Spaces of Dimension \(\varvec{3}\)

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We find a spinorial representation of a Riemannian or Lorentzian surface in a Lorentzian homogeneous space of dimension 3. We in particular obtain a representation theorem for surfaces in \(\mathbb {L}(\kappa ,\tau )\) spaces. We then recover the Calabi correspondence between minimal surfaces in \(\mathbb {R}^3\) and maximal surfaces in \(\mathbb {R}_1^3\), and obtain a new Lawson type correspondence between CMC surfaces in \(\mathbb {R}_1^3\) and in the 3-dimensional pseudo-hyperbolic space \(\mathbb {H}_1^{3}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C.: Extrinsic bounds for the eigenvalues of the Dirac operator. Ann. Glob. Anal. 1(6), 573–596 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bayard, P.: On the spinorial representation of spacelike surfaces into 4-dimensional Minkowski space. J. Geom. Phys. 74, 289–313 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bayard, P., Lawn, M.A., Roth, J.: Spinorial representation of submanifolds in Riemannian space forms. Pac. J. Math. 291, 51–80 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bayard, P., Patty, V.: Spinor representation of Lorentzian surfaces in \(\mathbb{R}^{2,2}\). J. Geom. Phys. 95 (2014)

  5. Bayard, P., Roth, J., Zavala, B.: Spinorial representation of submanifolds in metric Lie groups. J. Geom. Phys. 44, 433–453 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bourguignon, J.P., Hijazi, O., Milhorat, J.L., Moroianu, A., Moroianu, S.: A Spinorial Approach to Riemannian and Conformal Geometry. EMS Monographs in Mathematics (2010)

  7. Cahen, M., Parker, M.: Pseudo-Riemannian Symmetric Spaces. American Mathematical Society, Providence (1980)

    Book  Google Scholar 

  8. Cahen, M., Wallach, N.: Lorentzian symmetric spaces. Bull. Am. Math. Soc. 76, 585–591 (1970)

    Article  MathSciNet  Google Scholar 

  9. Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57, 1279–1291 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv. 82, 87–131 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. Friedrich, T.: On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phys. 28, 143–157 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hijazi, O., Montiel, S., Roldán, A.: Dirac operator on hypersurfaces in negatively curved manifolds. Ann. Glob. Anal. Geom. 23, 247–264 (2003)

    Article  Google Scholar 

  13. Hijazi, O., Montiel, S., Zhang, X.: Dirac operator on embedded hypersurfaces. Math. Res. Lett. 8, 195–208 (2001)

    Article  MathSciNet  Google Scholar 

  14. Lawn, M.A.: Méthodes spinorielles et géométrie para-complexe et para-quaternionique en théorie des sous-variétés. Ph.D. thesis, Université Henri Poincaré, Nancy I (2007)

  15. Lawn, M.A.: Immersions of Lorentzian surfaces in \(\mathbb{R}^{2,1}\). J. Geom. Phys. 8, 683–700 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lawn, M.A., Roth, J.: Spinorial characterizations of surfaces into 3-dimensional pseudo-Riemannian space forms. Math. Phys. Anal. Geom. 14, 185–195 (2011)

    Article  MathSciNet  Google Scholar 

  17. López, F., López, R., Souam, R.: Maximal surfaces of Riemann type in Lorentz–Minkowski space \(\mathbb{L}^3\). Mich. Math. J. 47, 469–497 (2000)

    Article  Google Scholar 

  18. Malliavin, P.: Géométrie différentielle intrinsèque. Hermann, Paris (1972)

    MATH  Google Scholar 

  19. Manzano, J.: On the classification of the Killing submersions and their isometries. Pac. J. Math. 270, 367–392 (2014)

    Article  MathSciNet  Google Scholar 

  20. Meeks, W., Pérez, J.: Constant mean curvature surfaces in metric Lie groups. Contemp. Math. 570, 25–110 (2012)

    Article  MathSciNet  Google Scholar 

  21. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  Google Scholar 

  22. Morel, B.: Surfaces in \(\mathbb{S}^3\) and \(\mathbb{H}^3\) via spinors. Séminaire de Théorie spectrale et géométrie, Grenoble 23, 131–144 (2005)

    Article  Google Scholar 

  23. Nakad, R., Roth, J.: Hypersurfaces of \(Spin^c\) manifolds and Lawson type correspondence. Ann. Glob. Anal. Geom. 42, 421–442 (2012)

    Article  Google Scholar 

  24. Nakad, R., Roth, J.: Complex and Lagrangian surfaces of the complex projective space via Kählerian Killing \(Spin^c\) spinors. J. Geom. Phys. 116, 316–329 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Patty, V.: A generalized Weierstrass representation of Lorentzian surfaces in \(\mathbb{R}^{2,2}\) and applications. Int. J. Geom. Methods Mod. Phys. 13 (2016)

  26. Roth, J.: Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds. J. Geom. Phys. 60, 1045–1061 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. Roth, J.: Isometric immersions into Lorentzian products. Int. J. Geom. Methods Mod. Phys. 8, 1–22 (2011)

    Article  MathSciNet  Google Scholar 

  28. Stein, E., Milnor, J., Spivak, M., Wells, R., Mather, J.: Morse Theory. Annals of Mathematics Studies (1963)

  29. Wolf, J.: Spaces of Constant Curvature. Publish or Perish, Berkeley (1984)

    MATH  Google Scholar 

  30. Wu, H.: On the de Rham decomposition theorem. Ill. J. Math. 8, 291–311 (1964)

    MathSciNet  MATH  Google Scholar 

  31. Wu, H.: Holonomy groups of indefinite metrics. Pac. J. Math. 20, 351–392 (1967)

    Article  MathSciNet  Google Scholar 

  32. Zavala, B.: Representación espinorial de superficies en espacios homogéneos lorentzianos 3-dimensionales. Ph.D. thesis, Facultad de Ciencias UNAM, Ciudad de México (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berenice Zavala Jiménez.

Additional information

Communicated by Rafał Abłamowicz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by the project PAPIIT IA106218. She thanks P. Bayard for valuable suggestions during the development of this work and J. Roth for useful conversations, especially about the \(\mathbb {L}(\kappa ,\tau )\) spaces.

Appendices

Appendix A: Identification of Spinor Bundles

We consider a simply connected pseudo-Riemmanian surface M and the trivial bundle \(E=M\times \mathbb {R}\longrightarrow M\) with metric \({\mp } d\nu ^2\) depending on whether M is Riemannian or Lorentzian and let us denote the spin structures of TM and E by \({\widetilde{Q}}_M\) and \({\widetilde{Q}}_E\) respectively. We identify here the spinor bundle \(\Sigma M\) with a subbundle of the bundle \(\Sigma =\left( {\widetilde{Q}}_{_M} \times _M {\widetilde{Q}}_{_E}\right) \times _\rho C\!\ell _{1,2}\) defined by (6).

Let us begin with the Riemannian case. We define the complexified quaternions as

$$\begin{aligned} \mathbb {H}^{\mathbb {C}}:=\mathbb {H}\otimes _{\mathbb {R}}\mathbb {C}=\{z_0+z_1I+z_2J+z_3K : z_i\in \mathbb {C}\}. \end{aligned}$$

This algebra is endowed with the quadratic form \(\langle q,q\rangle =z_0^2+z_1^2+z_2^2+z_3^2\), where \(q=z_0+z_1I+z_2J+z_3K\in \mathbb {H}^{\mathbb {C}}\).

Remark 6

Let \((e_0,e_1,e_2)\) be the standard basis of \(\mathbb {R}^{1,2}\), which is such that \(\langle e_i, e_j\rangle =0\) if \(i\ne j\) and \(\langle e_0, e_0\rangle =-1=-\langle e_1, e_1\rangle =-\langle e_2, e_2\rangle \). The map obtained by linearity from \(e_0\longmapsto iI\), \(e_1\longmapsto J\), \( e_2\longmapsto JI=-K\) is a Clifford application which induces an isomorphism of algebras between \(C\!\ell _{1,2}\) and \(\mathbb {H}^{\mathbb {C}}\). Using this isomorphism, the even Clifford algebra \(C\!\ell _{1,2}^{0}\) is isomorphic to

$$\begin{aligned} \{q_0+q_1I+iq_2J+iq_3K : q_i\in \mathbb {R}\}. \end{aligned}$$

We consider the following representations of the group \(\mathrm {Spin}(0,2)\) given by the left-multiplication:

$$\begin{aligned} \rho _1:\mathrm {Spin}(0,2)\longrightarrow \mathrm {GL}(C\!\ell _{0,2}),&\rho _2:\mathrm {Spin}(0,2)\subset \mathrm {Spin}(1,2)\longrightarrow \mathrm {GL}(C\!\ell _{1,2}^{0}). \end{aligned}$$

Here and below we use the models

$$\begin{aligned} C\!\ell _{0,2}=\mathbb {H}\quad {and}\quad \mathrm {Spin}(0,2)=\{q_0+q_1I: q_i\in \mathbb {R},\ q_0^2+q_1^2=1\}. \end{aligned}$$

The representation \(\rho _1\) is the standard spin representation (if we identify \(\mathbb {H}\simeq \mathbb {C}^2\)). The following lemma states that the representations \(\rho _1\) and \(\rho _2\) are equivalent.

Lemma 10

The isomorphism of vector spaces

$$\begin{aligned} f :\ \ \ C\!\ell _{0,2}\longrightarrow & {} C\!\ell _{1,2}^{0} \\ \ \ \ \ \ \ q_0+q_1I+J(q_2-Iq_3)\longmapsto & {} q_0+q_1I+iJ(q_2-Iq_3) \end{aligned}$$

induces a \(\mathbb {C}\)-linear isomorphism between the representations \(\rho _1\) and \(\rho _2\), where the complex structure in both spaces is given by the right multiplication by I.

Proof

A computation shows that \(f(gq)=gf(q)\) \(\forall g\in \mathrm {Spin}(0,2),\forall q\in C\!\ell _{0,2}.\) \(\square \)

Identifying \(e_0\) with iI (see Remark 6), the isomorphism f satisfies the following:

Lemma 11

If \(x\in \mathbb {R}^2\) and \(q \in \mathbb {H}\) then \(f(x\cdot q)=ie_0\cdot x\cdot f(q)\), where i is the complex structure in \(C\!\ell _{1,2}^0\) given by the right multiplication by I.

Since E is trivial the orthonormal frame bundle is \(Q_E=M\times \{1\}\) and \({\widetilde{Q}}_{E}=M\times \{\pm 1\}\) is also trivial. We consider the global section \({\widetilde{s}}_E:M\longrightarrow \{\pm 1\}\) given by \(m\longmapsto +1\). Considering the inclusion \({\widetilde{Q}}_M\longrightarrow {\widetilde{Q}}_M\times {\widetilde{Q}}_E\), \({\widetilde{s}}_M\longmapsto ({\widetilde{s}}_M,{\widetilde{s}}_E)\) and the isomorphism f of Lemma 11 we get the bundle isomorphism

$$\begin{aligned} \Sigma M:= \overset{\sim }{Q}_{_M}\times _\rho \Sigma _2\longrightarrow & {} \Sigma _0:=\left( {\overset{\sim }{Q}_{_M}\times _{_M}\overset{\sim }{Q}_{_E}}\right) \times _\rho C\!\ell _{1,2}^{ ^\circ } \\ \psi :=\big [ \overset{\sim }{s}_{_M},q\big ]\longmapsto & {} \psi ^*:=\big [ (\overset{\sim }{s}_{_M},\overset{\sim }{s}_{_E}),f(q)\big ]; \end{aligned}$$

it satisfies

$$\begin{aligned} (\nabla _{_X}\psi )^*=\nabla _{_X}\psi ^*,\quad (X\cdot _M\psi )^*=iN\cdot X\cdot \psi ^*\quad {and}\quad |\psi ^+|^2-|\psi ^-|^2=\langle \langle \psi ^*,\psi ^*\rangle \rangle \end{aligned}$$

for all \(X\in TM,\) where \(N=[(\overset{\sim }{s}_M,\overset{\sim }{s}_E), e_0]\) (see [32, Prop. 3.4.9] for more details).

Let us see now the Lorentzian case. Here the spinor bundle of M is \(\Sigma M={\widetilde{Q}}_M\times _{\rho _1} C\!\ell _{_{1,1}},\) where \(\rho _1:\mathrm {Spin}(1,1)\longrightarrow \mathrm {GL}(C\!\ell _{1,1})\) is the representation given by left-multiplication. As above we have \({\widetilde{Q}}_E=M\times \{\pm 1\},\) the section \(\overset{\sim }{s}_{_E}: m\mapsto +1\) of \({\widetilde{Q}}_E,\) and the inclusion \(\overset{\sim }{Q}_{_M}\longrightarrow \overset{\sim }{Q}_{_M}\times \overset{\sim }{Q}_{_E}\), \(\overset{\sim }{s}_{_M}\longmapsto (\overset{\sim }{s}_{_M},\overset{\sim }{s}_{_E}).\) Using the isomorphism \(C\!\ell _{1,1}\simeq C\!\ell _{1,2}^{0}\) (induced by the Clifford application \(\mathbb {R}^{1,1}\longrightarrow C\!\ell _{12}^{0}\), \(x\longmapsto x\cdot e_2\), where \((e_0,e_1,e_2)\) is the standard basis of \(\mathbb {R}^{1,2}\)) we obtain a bundle isomorphism

$$\begin{aligned} \overset{\sim }{Q}_{_M}\times _{\rho _1} C\!\ell _{11}\longrightarrow & {} \left( {\overset{\sim }{Q}_{_M}\times _{_M}\overset{\sim }{Q}_{_E}}\right) \times _\rho C\!\ell _{1,2}^{0}\nonumber \\ \psi\longmapsto & {} \psi ^*; \end{aligned}$$

it satisfies the properties

$$\begin{aligned} (\nabla _{_X}\psi )^*=\nabla _{_X}\psi ^*,\quad (X\cdot _M\psi )^*=X\cdot N \cdot \psi ^*\quad {and}\quad |\psi ^+|^2-|\psi ^-|^2=\langle \langle \psi ^*,\psi ^*\rangle \rangle \end{aligned}$$

for all \(X\in TM,\) where \(N=[(\overset{\sim }{s}_M,\overset{\sim }{s}_E), e_2]\) (see [32, Prop. 3.4.16] for more details).

Appendix B: Bivectors and Linear Operators

We prove that a skew-symmetric operator \(u:\mathbb {R}^{r,s}\longrightarrow \mathbb {R}^{r,s}\) is identified with a bivector \({\underline{u}}\in \Lambda ^2(\mathbb {R}^{r,s})\). Let us consider the following bracket in the Clifford algebra \(C\!\ell _{r,s}\)

$$\begin{aligned}{}[a,b]=\frac{1}{2}(a\cdot b-b\cdot a), \end{aligned}$$
(68)

for all \(a,b\in C\!\ell _{r,s}\).

Lemma 12

Let \(u:\mathbb {R}^{r,s}\longrightarrow \mathbb {R}^{r,s}\) be a skew-symmetric operator. The bivector that represents u is

$$\begin{aligned} {\underline{u}}=\frac{1}{2}\sum _{j=1}^{r+s}\varepsilon _je_j\cdot u(e_j),&\varepsilon _j=\langle e_j,e_j\rangle =\pm 1, \end{aligned}$$
(69)

and for all \(\xi \in \mathbb {R}^{r,s}\) we have

$$\begin{aligned}{}[{\underline{u}},\xi ]=u(\xi ). \end{aligned}$$
(70)

Proof

Let us consider the linear application \(u:\mathbb {R}^{r,s}\longrightarrow \mathbb {R}^{r,s}\) given by \(e_i\longmapsto \varepsilon _j e_j\) and \(e_j\longmapsto -\varepsilon _i e_i\) if \(i<j\) and \(e_k\longmapsto 0\) if \(k\ne i,j\) which corresponds to \(\varepsilon _i e_i\wedge \varepsilon _j e_j \in \Lambda ^2 \mathbb {R}^{r,s}\). This map is skew-symmetric and \({\underline{u}}=\varepsilon _i\varepsilon _je_i\cdot e_j=\frac{1}{2}\varepsilon _i\varepsilon _j\left( e_i\cdot e_j-e_j\cdot e_i\right) \) satisfies

$$\begin{aligned}{}[{\underline{u}},e_k]= & {} \frac{1}{2}\varepsilon _i\varepsilon _j(e_i\cdot e_j\cdot e_k-e_k\cdot e_i\cdot e_j), \end{aligned}$$

which yields for \(k=i\)

$$\begin{aligned}{}[{\underline{u}},e_i]=\frac{1}{2}\varepsilon _i\varepsilon _j(\varepsilon _i e_j+\varepsilon _i e_j)=\varepsilon _j e_j=u(e_i); \end{aligned}$$

similarly we can prove that \([{\underline{u}},e_j]=u(e_j)\) and also readily see that \([{\underline{u}},e_k]=0\) for \(k\ne i, j\). Equality (70) is a consequence of linearity. \(\square \)

Table 1 \(\mathbb {L}(\kappa , \tau )\) spaces

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, B.Z. Spinorial Representation of Surfaces in Lorentzian Homogeneous Spaces of Dimension \(\varvec{3}\). Adv. Appl. Clifford Algebras 32, 21 (2022). https://doi.org/10.1007/s00006-022-01205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-022-01205-3

Keywords

Mathematics Subject Classification

Navigation