Skip to main content
Log in

Pyrrhotite–Nisbite–Breithauptite–Sulfoantimonide Micromineral Assemblage: a Product of High-Temperature Recrystallization of Ores at the Yuzhnoe Vein-Type Tin–Silver–Polymetallic Deposit, Sikhote-Alin, Russia

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—The paper presents the results of mineralogical studies of tin–silver–polymetallic ores localized at the deep level (500–700 m below the surface) of the Yuzhnoe Cenomanian deposit. On the deep southwestern flank of vein no. 4, indications of ore recrystallization have been revealed. Mineral segregations (inclusions) with sharp boundaries and myrmekite texture as fine intergrowths of pyrrhotite with nisbite (NiSb2) or breithauptite (NiSb) are found in recrystallized ores at the grain boundaries of nickel-bearing pyrrhotite and galena with abundantly disseminated Ag–Sb minerals. Less frequently, myrmekite-like segregations are pyrrhotite graphically intergrown with gudmundite or nonstoichiometric chemically variable Ag sulfoantimonide (phase X). Tiny grains of Ag-bearing chalcopyrite and stannite are frequently observed in pyrrhotite–sulfoantimonide intergrowths. The formation of myrmekite-like segregations is presumably associated with ore transformation in the fluid-thermal field of a Maastrichtian postore leucogranite intrusion. Local segregations of the mobilizate (mobile phase) formed as a metal-bearing sulfoantimonide melt during ore recrystallization at a temperature of ~600°C as a result of the redistribution and migration of trace elements to the contacts of mineral grains. Heterogenous distribution and variable chemical composition of micrographic segregations reflect immiscibility and differentiation of the formed metal-bearing sulfoantimonide melt during its liquidus evolution. The final avalanche-like quenching crystallization of melt inclusions was implemented below 300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Barkov, A.Y., Laflamme, J.H.G., Cabri, L.J., and Martin, R.F., Platinum-group minerals from the Wellgreen Ni-Cu-PGE deposit, Yukon, Canada. Canad. Miner, 2002, vol. 40, pp. 651–669.

    Article  Google Scholar 

  2. Bastin, E.S., Significant replacement textures at Cobalt and South Lorraine, Ontario, Canada. Econ. Geol, 1950, vol. 45, pp. 808–817.

    Article  Google Scholar 

  3. Bortnikov, N.S., Borodaev, Yu.S., Vyal’sov, L.N., and Mozgova, N.N., Rare minerals of antimony and their parageneses in ores of the Yuzhny deposit (Tetyukhinsky district, Southern Primorye). In: Novye dannye o mineralakh SSSR (New Data on minerals of the USSR), Moscow: Nauka, 1975. P. 3-13 (in Russian).

  4. Bryzgalov, I.A., Krivitskaya, N.N., and Spiridonov, E.M., First finding of nisbite and aurostibite in the eastern Transbaikal region, Dokl. Earth Sci, 2007, vol. 417, pp. 1265–1267.

    Article  Google Scholar 

  5. Cabri, L.S., Hulbert, L.G., Laflammer, J.H.G., Lastra, R., Sie, S.H., Ryan, C.G., and Campbell, J.L., Process mineralogy of samples from the Wellgreen copper—nickel—platinum–palladium deposit, Yukon, Explor. Mining Geol., 1993, vol. 2, pp. 105–119.

    Google Scholar 

  6. Clark, A.H., Heating experiments on gudmundite, Mineral. Mag., 1966, vol. 35, pp. 1123–1125.

    Google Scholar 

  7. Cook, N.J., Spry, P.G., and Vokes, F.M., Mineralogy and textural relationships among sulphosalts and related minerals in the Bleikvassli Zn–Pb—(Cu) deposit, Nordland, Norway, Mineral. Deposita, 1998, vol. 34, pp. 35–56.

    Article  Google Scholar 

  8. Frost, B.R., Mavrogenes, J.A., and Tomkins, A.G., Partial melting of sulfide ore deposits during medium and high-grade metamorphism, Can. Mineral., 2002, vol. 40, pp. 1–18.

    Article  Google Scholar 

  9. Geodinamika, magmatism i metallogeniya Vostoka Rossii (Geodynamics, Magmatism. and Metallogeny of Russian East), Khanchuk, A.I., Ed., Vladivostok: Dal’nauka, 2006.

    Google Scholar 

  10. Gonevchuk, V.G., Olovonosnye sistemy Dal’nego Vostoka: magmatism i rudogenez (Tin-Bearing Systems of the Far East: Magmatism and Ore Genesis), Vladivostok: Dalnauka, 2002.

  11. Gonevchuk, V.G., Gonevchuk, G.A., Lebedev, V.A., and Orekhov, A.A., Monzonitoid association of the Kavalerovo ore district (Primorye): geochronology and some genetic problems, Russ. J. Pacific Geol., 2011, vol. 5, no. 3, pp. 199–209.

    Article  Google Scholar 

  12. Kazachenko, V.T., Yuzhnoe lead-zinc deposit. In: Geodinamika, magmatism I metallogeniya Vostoka Rossii (Geodynamics, Magmatism and Metallogeny of the Russian East), Vladivostok: Dalnauka, 2006, vol. 2.

  13. Kazachenko, V.T., Margantsovistye i zhelezistye metasomatity Yuzhnogo Primor’ya (Manganese and Ferruginous Metasomatites of Southern Primorye), Vladivostok: Dalnauka, 1979, p. 160.

  14. Keighin, C.W. and Honea, R.M., The system Ag–Sb–S from 600°C to 200°C, Mineral. Deposita, 1969, vol. 4, pp. 153–171.

    Article  Google Scholar 

  15. Khanchuk, A.I., Grebennikov, A.V., and Ivanov, V.V., Albian-Cenomanian orogenic belt and igneous province of Pacific Asia, Russ. J. Pacific Geol., 2019, vol. 13, no. 3, pp. 187–219.

    Article  Google Scholar 

  16. Kojonen, K. and Johanson, B., Ore mineralogy of the Rauhala Zn-Cu-Pb sulfide deposit. Geol. Surv. Finland, 1988, Spec. Pap., vol. 11, pp. 10–42.

    Google Scholar 

  17. Kretschmar, U. and Scott, S.D., Phase relations involving arsenopyrite in the system Fe–As–S and their application, Can. Mineral., 1976, no. 14, pp. 364–386.

  18. Lledo, H.L. and Jenkins, D.M., Experemental investigation of the upper thermal stability of the Mg-rich actinolite: implications for Kiruna-tipe iron deposits, J. Petrol., 2008, vol. 49, no. 2, pp. 225–238.

    Article  Google Scholar 

  19. Mavrogenes, J., Frost, R., and Sparks, H.A., Experimental evidence of the evolution via immiscibility and fractional crystallization, Can. Mineral., 2013, vol. 51, pp. 841–850.

    Article  Google Scholar 

  20. Metallogenesis and Tectonics of Northeast Asia, Nockleberg, W.J., U.S. Geol. Surv. Prof. Pap., 2010, no. 1765 CD-ROM.

  21. Mineraly. Spravochnik (Minerals. A Textbook), Chukhrov, F.V., Eds., Moscow: Nauka, 1981, Vol. 3.

    Google Scholar 

  22. Onufrienok, V.V. and Sazonov, A.M., Peculiarities of embedding atoms in the pyrrhotite structure of the Panimba deposit, in: Unikal’nye geologicheskie ob’ekty Kol’skogo poluostrova: Pirrotinovoe ushchel’e (Unique Geological Object of the Kola Peninsula: Pyrrhotite Gorge), Apatity, 2011, pp. 51–57.

  23. Osipova, G.A., Elementy-primesi i mineral’nye vklyucheniya v kassiteritakh I sul’fidakh olovo-polimetallicheskikh mestorozhdenii (Trace-Elements and Mineral Inclusions in Cassiterites and Sulfides of Tin–Polymetallic Deposits), Vladivostok: Dalnauka, 1993, p. 147.

  24. Pal, T. and Deb, M., Breithauptite: a rare antimonide in the Dariba—Rajpura–Bethumni Belt, Rajsamand district, Rajasthan, J. Geol. Soc. India, 2009, vol. 74, pp. 35–38.

    Article  Google Scholar 

  25. Rao, B.G., Parihar, R., Pruseth, K.L., and Mishra, B., The occurrence of breithauptite and nisbite-like phases at Sindersar–Khurd, Rajasthan, India: implication for melt-assisted sulfide remobilization, Can. Mineral., 2017, vol. 55, pp. 75–87.

    Article  Google Scholar 

  26. Shaibekov, R.I., Gaikovich, M.M., Isaenko, S.I., and Shevchuk, S.S., The first data on breithauptite in chromitite from the northern part of the Voykar-Synya ultramafic massif (Polar Urals), Dokl. Earth Sci, 2017, vol. 477, no. 1, pp. 1363–1367.

    Article  Google Scholar 

  27. Spiridonov, E.M., Gritsenko, Y.D., and Ponomarenko, A.I., Metamorphic hydrothermal parkerite and associated minerals in the Norilsk Ore Field, Geol. Ore Deposits, 2008, vol. 60, pp. 755–762.

    Article  Google Scholar 

  28. Strizhkova, A.A., Vasilenko, G.P., and Zagryazhskaya, G.D., The relationship of tin mineralization with deep basaltic magmatism (on the example of the Krasnorechensk ore cluster). In: Geologiya i metallogeniya rudnykh raionov Dal’nego Vostoka (Geology and Metallogeny of Ore Districts of the Far East), Vladivostok, 1985, pp. 49–60.

    Google Scholar 

  29. Tomkins, A.G., Pattison, D.R.M., and Zaleski, E., The Hemlo gold deposit, Ontario: an example of melting and mobilization of a precious metal–sulfosalt assemblage during amphibolites facies metamorphism and deformation, Econ. Geol., 2004, vol. 99, pp. 1063–1084.

    Article  Google Scholar 

  30. Vasilenko, G.P., On the problem of hypogenic zonality of the Smirnovsky deposit. In: Zonal’nost i glybinnost’ orudeneniya v Tikhookeanskom rudnom poyase (Zonality and Depth of Mineralization in the Pacific Ore Belt), Vladivostok, 1971, pp. 34–37.

    Google Scholar 

  31. Vasilenko, G.P., Derbaremdiker, M.M., and Kuleshova, E.B., The distribution of trace elements in sulfide minerals of the Verkhneussursky tin deposit, in Geokhimiya i metody issledovaniya mineral’nogo syr’ya (Geochemistry and Research Methods of Mineral Raw Materials of the Far East), Vladivostok, 1975, pp. 143–155.

    Google Scholar 

  32. Zakrzewski, M.A., Burke, E.A.J., and Nugteren, H.W., Cobalt minerals in the Hallefors area, Berglagen, Sweden: New occurrences of costibite, paracostibite, nisbite and cobaltian ulmannite, Can. Mineral., 1980, vol. 18, pp. 165–171.

    Google Scholar 

  33. Zhu, Y., Tan, J., and Qiu, T., Platinum group mineral (PGM) and Fe–Ni–As–S minerals in the Sartohay chromitite, Xinjiang (NW China): implications for the mobility of Os, Ir, Sb, and As during hydrothermal processes, Ore Geol. Rev., 2016, vol. 72, pp. 299–312.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study of the deep level of the Yuzhnoe deposit was initiated by the Geological Survey of Dalpolimetall GMK, personnel of which accompanied the works, including sample collection and documentation of underground mines. We thank G.B. Molchanova and N.I. Ekimova, researchers of the Laboratory of X-ray Methods at the Far East Geological Institute, Far East Branch, Russian Academy of Sciences, for their assistance in instrumental studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ratkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratkin, V.V., Simanenko, L.F., Eliseeva, O.A. et al. Pyrrhotite–Nisbite–Breithauptite–Sulfoantimonide Micromineral Assemblage: a Product of High-Temperature Recrystallization of Ores at the Yuzhnoe Vein-Type Tin–Silver–Polymetallic Deposit, Sikhote-Alin, Russia. Geol. Ore Deposits 63, 717–734 (2021). https://doi.org/10.1134/S1075701521070072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521070072

Keywords:

Navigation