Skip to main content
Log in

Ferrokësterite and Kësterite in Greisens Associated with Lithium–Fluorine Granites of the Russian Far East

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The typomorphic features and origin of the ferrokësterite and kësterite sulfostannates from Li–F granite-related greisen ore deposits of the Russian Far East are discussed. The composition of kësterite from the greisens at its type locality, the Këster deposit (Yakutia), is described. The parameters of the mineral correspond to the earlier descriptions. Special attention is given to the localization and composition of ferrokësterite found in the greisens (zwitters) of the Pravourmiyskoye deposit (the Amur River region). This ferrokësterite is characterized by a high Fe/(Fe + Zn) ratio in the range of 0.73–0.92 and deficiency in In, Ag, Cd, Bi, As, and Se impurities. Kësterite and ferrokësterite are associated with cassiterite, sphalerite, pyrrhotite, and arsenopyrite at the upper levels of greisen ore bodies, where they displace other sulfostannate minerals. A comparison between the kësterites and ferrokësterites from the Russian Far East and sulfostannates from the greisens associated with lithium–fluorine granites elsewhere around the world is made. It is proposed to consider kësterite and ferrokësterite as indicator minerals of large-scale rare-metal–tin minerageny. Ferrokësterite is a polymorphic modification of stannite. The boundary between kësterite and ferrokësterite is defined by a value of Fe/(Fe + Zn) of around 0.73. Ferrokësterite should be analyzed as a probable natural prototype of an optoelectronic material for solar cell manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alekseev, V.I., Litii-ftoristye granity Dal’nego Vostoka, (Lithium–Fluorine Granites of the Far East), St. Petersburg: Nats. Mineral.-Syr’ev. Uni., 2014.

  2. Anikina, E.Y., Bortnikov, N.S., Gamyanin, G.N., Hocartite and stannite–kesterite series from silverlead–zinc deposits of the Kolyma–Verkhoyansk fold belt: implications for ore genesis, In: 9th Biennial Meet. Soc. Geol. Applied Miner. Deposits, Dublin, 2007, vol. 1, pp. 1291–1294.

  3. Betterton, J., Green, D.I., Jewson, C., Spratt, J., and Tandy, P., The composition and structure of jeanbandyite and natanite, Mineral. Mag., 1998, vol. 62, pp. 707–712.

    Article  Google Scholar 

  4. Bonshtedt-Kupletskaya, E.M., New minerals, Zap. Vsesoyuz. Mineral. O-va, 1958, no. 1, pp. 76–84.

  5. Bortnikov, N.S. and Evstigneeva, T.L., Crystal chemistry, stability, and formation conditions of sulfides with sphalerite-like crystal structures, Geol. Ore Deposits, 2003, vol. 45, no. 2, pp. 133–150.

    Google Scholar 

  6. Brodskaya, R.L. and Marin, Yu.B., Ontogenetic analysis of mineral individuals and aggregates at microand nanolevel for the restoration of ore-forming conditions and assessment of mineral raw technological properties, J. Mining Inst., 2016, vol. 219, pp. 369–376.

    Google Scholar 

  7. Černy, P. and Harris, D.C., The Tango pegmatite at Bernic Lake, Manitoba. XI. Native elements, alloys, sulfides and sulfosalts, Can. Mineral., 1978, vol. 16, no. 4, pp. 640–625.

    Google Scholar 

  8. Dhawale, D.S., Ali, A., and Lokhande, A.C., Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: a status review, Sustainable Energy & Fuels, 2019, vol. 3, no. 6, pp. 1365–1383.

    Article  Google Scholar 

  9. Gaskov, I.V., Vladimirov, A.G., Pavlova, G.A., Khanchuk, A.I., and Gvozdev, V.I., Distribution of indium in ores of some base metal and tin-sulfide deposits in Siberia and the Russian Far East, Geol. Ore Deposits, 2017, vol. 59, no. 1, pp. 56–67.

    Article  Google Scholar 

  10. Gaspar, O.C., Mineralogy and sulfide mineral chemistry of the Neves-Corvo Ores, Portugal: insight into their genesis, Can. Mineral., 2002, vol. 40, pp. 611–636.

    Article  Google Scholar 

  11. Gavrilenko, V.V., Marin, Yu.B., Panova, E.G., and Levsky, L.K., Mineralogical–geochemical signs of large and unique deposits, associated with granite magmatism, Zap. Ross. Mineral. O-va, 2000, no. 2, pp. 1–9.

  12. Geodinamika, Magmatizm, i Metallogeniya Vostoka Rossii, (Geodynamics, Magmatism, and Metallogeny of Russian East), Vladivostok: Dal’nauka, 2006, vol. 2, pp. 573–981.

    Google Scholar 

  13. Gulbin, Yu.L. and Evangulova, E.B., Hydrothermal–metasomatic formations of the Pravourmiysky deposit, Zap. Leningrad. Gorn. Inst., 1987, vol. 112, pp. 39–50.

    Google Scholar 

  14. Ivanov, V.V. and Pyatenko, Yu.A., On so-called kesterite, Zap. Vsesoyuz. Mineral. O-va, 1959, no. 2, pp. 165–168.

  15. Jiménez-Franco, A., Alfonso, P., Canet, C., and Trujillo, J.E., Mineral chemistry of In-bearing minerals in the Santa Fe mining district, Bolivia, Andean Geol., 2018, vol. 45, no. 3, pp. 410–432.

    Article  Google Scholar 

  16. Keutsch, F. and Brodtkorb, M.D., Metalliferous paragenesis of the San Jose mine, Oruro, Bolivia, J. South Am. Earth Sci., 2008, vol. 25, no. 4, pp. 485–491.

    Article  Google Scholar 

  17. Khomyakov, A.P., Mineral endemics as indicators of high-productive ore parent processes, In: Novye idei i kontseptsii v mineralogii (New Ideas and Concepts in Mineralogy), Syktyvkar: Geol. Inst. Komi Nauchn. Ts. UrO RAS, 2002, pp. 232–233.

  18. Kiselev, A.I., Silver–zincian stannite from a deposit of the Arga–Ynnakh–Khaysky intrusion in the basin of the Yana River, Mater. Geol. Polezn. Iskop. Severo-Vostoka Rossii (Proc. Geol. Mineral. Resour. Northeastern USSR), Magadan, 1948, vol. 3, pp. 113–117.

    Google Scholar 

  19. Kissin, S.A. and Owens, D.R., The relatives of stannite in the light of new data, Can. Mineral., 1989, vol. 27, no. 4, pp. 673–688.

    Google Scholar 

  20. Kokunin, M.V., Rare minerals of a forgotten deposit, Otechestvennaya Geol., 2011, no. 1, pp. 72–82.

  21. Liu, W.Y., Cook, N.J., Ciobanu, C.L., Yu, L., Qiu, X.P., and Chen, Y.C., Mineralogy of tin-sulfides in the Zijinshan porphyry-epithermal system, Fujian, Province., Ore Geol. Rev., 2016, vol. 72, no. 1, pp. 682–698.

    Article  Google Scholar 

  22. Makovicky, E., Topa, D., and Paar, W.H., The definition and crystal structure of clino-oscarkempffite, Ag15Pb6Sb21Bi18S72, Eur. J. Mineral., 2018, vol. 30, pp. 569–579.

    Article  Google Scholar 

  23. Marin, Yu.B., Mineralogical studies and the use of mineralogical information when solving problems of petro- and ore-genesis, Zap. Ross. Mineral. O-va, 2020, no. 4, pp. 1–15.

  24. Moura, M.A., Botelho, N.F., Carvalho de Mendonca, F., The indium-rich sulfides and rare arsenates of the Sn-In mineralized Mangabeira A-type granite, central Brazil, Can. Mineral., 2007, vol. 45, no. 3, pp. 485–496.

    Article  Google Scholar 

  25. Orlova, Z.V., Chemical analyses of ores and minerals from ore deposits of the northeast USSR, Tr. Vsesoyuz. Magadan. Nauchn.-Issled. Inst., 1956, vol. 2.

    Google Scholar 

  26. Osadchii, E.G. and Sorokin, V.I., Stanninsoderzhashchie sul’fidnye sistemy (Stannite-Bearing Sulfide Systems, Moscow: Nauka, 1989. Parrish, I.S., Mineral catalog for the Mount Pleasant deposit of Brunswick tin mines, Can. Mineral, 1977, vol. 15, pp. 121–126.

    Google Scholar 

  27. Parrish, I.S., Mineral catalog for the Mount Pleasant deposit of Brunswick tin mines, Can. Mineral., 1977, vol. 15, pp. 121–126.

  28. Plyushchev, E.V., Shatov, V.V., and Kashin, S.V., Metallogeniya gidrotermal’no-metasomaticheskikh obrazovanii, (Metallogeny of Hydrothermal-Metasomatic Rocks), Saint-Petersburg: VSEGEI, 2012.

  29. Popova, V.I., Popov, V.A., Korostelev, P.G., and Orlovsky, V.V., Mineralogiya rud W–Sn mestorozhdeniya Tigrinoe na Sikhote-Aline i perspektivy ego osvoeniya (Ore Mineralogy of the W–Sn Tigrinoe Deposit at Sikhote-Alin and Prospects of its Development), Yekaterinburg: RIO UrO RAS, 2013.

  30. Semenyak, B.I., Nedashkovskii, A.P., and Nikulin, N.N., Minerals of indium in ores of the Pravourmiysky deposit (Russian Far East), Geol. Rudn. Mestorozhd., 1994, vol. 13, no. 3, pp. 230–236.

    Google Scholar 

  31. Sinclair, W.D., Kooiman, G.J.A., Martin, D.A., Kjarsgaard, I.M., Geology, geochemistry and mineralogy of indium resources at Mount, Pleasant, and New, Bunswick., Ore Geol. Rev, 2006, vol. 28, no. 1, pp. 123–145.

    Article  Google Scholar 

  32. Slater, E.T., McDonald, A.M., and Kontak, D.J., Resolving primary and retrograde sulfide and sulfosalt textures in the epithermal Ag–Zn–Pb–Sn-rich Cortaderas zone, Pirquitas mine, Argentina, Can. Mineral., 2019, vol. 57, no. 1, pp. 117–143.

    Article  Google Scholar 

  33. Torres, B., Melgarejo, J.C., Torro, L., Camprubí, A., Castillo-Oliver, M., Artiaga, D., Campeny, M., Tauler, E., Jiménez-Franco, A., Alfonso, P., and Arce-Burgoa, O.R., The Poopo polymetallic epithermal deposit, Bolivia: mineralogy, genetic constraints, and distribution of critical elements, Minerals, 2019, vol. 9, no. 8, p. 472.

    Article  Google Scholar 

  34. Wallace, S.K., Mitzi, D.B., and Walsh, A., The steady rise of kesterite solar cells, ACS Energy Lett., 2017, vol. 2, no. 4, pp. 776–779.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-15-50064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Alekseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Murashova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, V.I., Marin, Y.B. Ferrokësterite and Kësterite in Greisens Associated with Lithium–Fluorine Granites of the Russian Far East. Geol. Ore Deposits 63, 850–856 (2021). https://doi.org/10.1134/S107570152108002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107570152108002X

Keywords:

Navigation