Skip to main content
Log in

Sulfur-Bearing Sodalite, Hackmanite, in Alkaline Pegmatites of the Inagli Massif (Aldan Shield): Crystal Chemistry, Photochromism, and Luminescence

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—Sulfur-containing sodalite, hackmanite, has been found for the first time in alkaline pegmatites of the Inagli alkaline–ultramafic massif, South Yakutia, Russia. Pegmatites with hackmanite have an amphibole–orthoclase (±diopside) and microcline–albite–amphibole (±aegirine) composition. The chemical composition of hackmanite (electron microprobe, wt %) is 25.60 Na2O, 31.56 Al2O3, 37.20 SiO2, 7.32 Cl, 0.57 S, 0.09 K2O, 0.03 CaO, 0.04 FeO. The empirical formula, calculated on the basis of 12 (Si + Al) cations is, Na8.07K0.02\({\text{Fe}}_{{{\text{0}}{\text{.01}}}}^{{{\text{2 + }}}}\)(Al5.96Si6.04)Σ = 12O24.09(Cl1.65S0.17)Σ = 1.82. The optical absorption, luminescence, and excitation spectra of the mineral revealed the presence of \({\text{O}}_{2}^{ - }\) and \({\text{S}}_{2}^{ - }\) sites. The EPR spectrum indicates the absence of a vacancy charge balance mechanism in the studied hackmanite sample. Thus, additional anions in hackmanite of the Inagli massif are Cl and \({\text{S}}_{2}^{ - }\) with an S–S bond length of 2.06 Å. According to the structure data, hackmanite does not contain S2–, \({\text{S}}_{2}^{{2 - }}\), and (SO4)2– anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Allan, R., Manual of Mineralogy, Edinburgh: A & C Black, 1834.

    Google Scholar 

  2. Armstrong, J.A. and Weller, M.T., Structural observation of photochromism, Chem. Commun., 2006, vol. 10, pp. 1094–1096.

    Article  Google Scholar 

  3. Balassone, G., Bellatreccia, F., Ottolini, L., Mormone, A., Petti, C., Ghiara, M.R., Altomare, A., Saviano, M., Rizzi, R., and D’Orazio, L., Sodalite-group minerals from Somma-Vesuvius volcano (Naples, Italy): a combined EPMA, SIMS and FTIR crystal chemical study, Can. Mineral., 2015, vol. 0, pp. 1–19.

    Google Scholar 

  4. Ballentyne, D.W.G. and Bye, K.L., The nature of photochromism in chlorosodalites from optical data, J. Phys. D: Appl. Phys., 1970, vol. 3, pp. 1438–1443.

    Article  Google Scholar 

  5. Ballirano, P., Maras, A., Burragato, F., and Mottana, A., Sodalite from Vetralla (Roman potassic province) and Bancroft (Ontario, Canada): observed and simulated IR spectra, Rendiconti Lincei, 1991, vol. 2, no. 4, pp. 361–369.

    Article  Google Scholar 

  6. Bellatreccia, F., Della, VenturaG., Piccinini, M., Cavallo, A., and Brilli, M., H2O and CO2 in minerals of the hauyne–sodalite group: an FTIR spectroscopy study, Mineral. Mag., 2009, vol. 73, no. 3, pp. 399–413.

    Article  Google Scholar 

  7. Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K., and Watkin, D.J., Crystals version 12: software for guided crystal structure analysis, J. Appl. Crystall., 2003, vol. 36, p. 1487.

    Article  Google Scholar 

  8. Borgström, L.H., Uvarovite and hackmanite, Geologiska foreningens i Stockholm forhandlingar. Stockholm, 1901a, vol. 23, pp. 557–566.

  9. Borgström, L.H., Hackmanit ett nutt mineral i sodalit gruppen, Geologiska Foreningens i Stockholm Forhandlingar, 1901b, vol. 23, pp. 563–569.

  10. Brese, N.E. and O’Keeffe, M., Bond-valence parameters for solids, Acta Crystall., 1991, pp. 192–197.

  11. Bruker, APEX2. Bruker AXS, Inc., Madison, Wisconsin, 2003.

  12. Bruker, SAINT. Bruker AXS, Inc., Madison, Wisconsin, 2007.

  13. Bruker, SADABS. Bruker AXS, Inc., Madison, Wisconsin, 2009.

  14. Carvalho, J.M., Norrbo, I., Ando, R.A., Brito, H.F., Fantinia, M.C.A., and Lastusaarib, M., Fast, low-cost preparation of hackmanite minerals with reversible photochromic behavior using a microwave-assisted structure conversion method. Chem. Commun, 2018, vol. 54, no. 53, pp. 7326–7329.

    Article  Google Scholar 

  15. Curutchet, A. and Le Bahers, T., Modeling the photochromism of S-doped sodalities using DFT, TDDFT, and SAC-CI methods, Inorganic Chem., 2016, vol. 56, no. 1, pp. 414–423.

  16. Deb, S.K. and Gallivan, J.B., Photoluminescence of and ions in synthetic sodalites. J. Luminescence, 1972, vol. 5, pp. 348–360.

    Article  Google Scholar 

  17. Dorfman, M.D., Mineralogiya pegmatitov I zon vyvetrivaniya v iiolit-urtitakh gory Yukspor Khibinskogo massiva (Mineralogy of pegmatites and weathering zones in ijolite–urtites of the Yukspor mountain, Khibiny massif), Moscow–Leningrad: Akad. Nauk SSSR, 1962.

  18. Efimov, A.F., Kravchenko, S.M., and Vlasova, E.V., On the mineralogy of alkaline pegmatites of the Inagli massif, Tr. Inst. Mineral., Geokhim., Kristallokhim. Redkikh Elementov, 1963, no. 16, pp. 141–175.

  19. Glagolev, A.A., Korchagin, A.M., and Kharchenkov, A.G., Shchelochno-ul’traosnovnye massivy Arbarastakh i Inagli, (Alkaline–Ultrabasic Arbarastakh and Anagli Massifs), Moscow: Nauka, 1974.

  20. Goettlicher, J., Kotelnikov, A., Suk, N., Kovalski, A., Vitova, T., and Steininger, R., Sulfur K X-ray absorption near edge structure spectroscopy on the photochrome sodalite variety hackmanite, Zeitschrift fur Kristallographie – Crystall. Materials, 2013, vol. 228, pp. 157–171.

    Google Scholar 

  21. Henderson, C.B.M. and Taylor, D., Infrared spectra of aluminogermanate- and aluminate-sodalites and a re-examination of the relationship between T–O bond length, T–O–T angle and the position of the main i.r. absorption band for compounds with framework structures, Spectrochimica Acta, 1979, vol. 35, pp. 929–935.

    Article  Google Scholar 

  22. Hodgson, W.G., Brinen, J.S., and Williams, E.F., Electron spin resonance investigation of photochromic sodalities, J. Chem. Phys., 1967, vol. 47, no. 10, pp. 3719–3723.

    Article  Google Scholar 

  23. Kaiheriman, M., Maimaitinaisier, A., Rehiman, A., and Sidike, A., Photoluminescence properties of green and red luminescence from natural and heat-treated sodalite, Phys. Chem. Mineral., 2014, vol. 41, pp. 227–235.

    Article  Google Scholar 

  24. Kirk, R.D., The luminescence and tenebrescence of natural and synthetic sodalite, Am. Mineral., 1955, no. 40, pp. 22–31.

  25. Kirk, R.D., Schulman, J.H., and Rosenstock, H.B., Structure in the luminescence emission of the ion, Solid State Commun., 1965, vol. 3, no. 9, pp. 235–239.

    Article  Google Scholar 

  26. Korchagin, A.M., Inaglinskii pluton i ego poleznye iskopaemye (Inagli Pluton and its Mineral Resources), Moscow: Nedra, 1996.

  27. Medved, D.B., Hackmanite and its tenebrescent properties, Am. Mineral., 1954, vol. 39, pp. 615–629.

    Google Scholar 

  28. Mineraly. Spravochnik. T. 5. Karkasnye Silicaty. Vyp. 1. Silikaty s razorvannymi karkasami. Polevye shpaty (Minerals. A Textbook. Volume 5. Framework Silicates. No. 1. Silicates with Broken Frameworks. Feldspars), Mozgova, N.N. and Sokolova, M.N., Moscow: Nauka, 2003.

  29. Mues-Schumacher, U., Keller, J., Kononova, V.A., and Suddaby, P.J., Mineral chemistry and geochronology of the potassic alkaline ultramafic Inagli Complex, Aldan Shield, eastern Siberia, Mineral. Mag., 1996, vol. 60, no. 5, pp. 711–730.

    Article  Google Scholar 

  30. Di Muro, A., Bonaccorsi, E., and Principe, C., Complex colour and chemical zoning of sodalite-group phases in a hauynophyre lava from Mt. Vulture, Italy, Mineral. Mag., 2004, vol. 68, no. 4, pp. 591–614.

    Article  Google Scholar 

  31. Norrbo, I., Gluchowski, P., Paturi, P., Sinkkonen, J., and Lastusaari, M., Persistent luminescence of tenebrescent Na8Al6Si6O24(Cl,S)2: multifunctional optical markers, Appl. Mat. Interfaces, 2016, vol. 8, pp. 11592−11602.

    Article  Google Scholar 

  32. Peterson, R.C., The structure of hackmanite, a variety of sodalite, from Mont St-Hilaire, Quebec, Can. Mineral., 1983, vol. 21, pp. 549–552.

    Google Scholar 

  33. Sidike, A., Sawuti, A., Wang, X.-M., Zhu, H.-J., Kobayashi, S., Kusachi, I., and Yamasita, N., Fine structure in photoluminescence spectrum of center in sodalite, Phys. Chem. Mineral., 2007, vol. 34, pp. 477–484.

    Article  Google Scholar 

  34. Steudel, R., Ermittlung von SS-kernabstanden aus schwingungsspektren (Determination of SS bond distances from vibrational spectra), Zeitschrift fur Naturforschung, 1975, vol. 30b, pp. 281–282.

    Article  Google Scholar 

  35. Stroud, C.E., Stencel, J.M., and Todd, Jr., L.T., Infrared spectra of cathodochromic sodalite, J. Chem. Phys, 1979, vol. 83, pp. 2378–2382.

    Article  Google Scholar 

  36. Taylor, M.J., Marshall, D.J., Forrester, P.A., McLaughlan, S.D., and Forrester, P.A., Colour centres in sodalites and their use in storage displays, Radio Electronic Engineer, 1970, vol. 40, no. 1, pp. 17–24.

    Article  Google Scholar 

  37. Warner T.E. Artificial hackmanite Na8[Al6Si6O24]Cl1.8S0.1 by a structure-conversion method with annealing under a reducing atmosphere, Synthesis, Properties and Mineralogy of Important Inorganic Materials, Hoboken: Wiley, 2011, pp. 240–253.

  38. Warner, T.E. and Hutzen, A.J.H., The effects of sulfur intercalation on the optical properties of artificial 'hackmanite', Na8[Al6Si6O24]Cl1.8S0.1; ‘sulfosodalite’, Na8[Al6Si6O24]S; and natural tugtupite, Na8[Be2Al2Si8O24](Cl,S)2 – δ, Phys. Chem. Mineral., 2012, vol. 39, pp. 163–168.

    Article  Google Scholar 

  39. Williams, E.R., Simmonds, A., Armstrong, J.A., and Weller, M.T., Compositional and structural control of tenebrescence, J. Mater. Chem., 2010, vol. 20, pp. 10883–10887.

    Article  Google Scholar 

  40. Zahoransky, T., Friis, H., and Marks, M.A.W., Luminescence and tenebrescence of natural sodalites: a chemical and structural study. Physics Chem. Mineral., 2016, vol. 43, pp. 459–480.

    Article  Google Scholar 

  41. Zilio, S.C. and Bagnato, V.S., Infrared spectra of natural sodalite, J. Chem. Phys., 1984, vol. 88, no. 7, pp. 1373–1376.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their deepest gratitude to I.V. Pekov for his valuable comments, which improved the manuscript. The study was carried out on equipment at the Isotopic and Geochemical Study resource center at the Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-05-00388).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Radomskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radomskaya, T.A., Kaneva, E.V., Shendrik, R.Y. et al. Sulfur-Bearing Sodalite, Hackmanite, in Alkaline Pegmatites of the Inagli Massif (Aldan Shield): Crystal Chemistry, Photochromism, and Luminescence. Geol. Ore Deposits 63, 696–704 (2021). https://doi.org/10.1134/S1075701521070060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521070060

Keywords:

Navigation