Skip to main content
Log in

On the Number of Proterozoic Supercontinents

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

The validity of the existence of two Proterozoic supercontinents previously identified by the author is considered in the light of modern data. An analysis of these data, especially the results of the published paleomagnetic studies, supports such a selection. This does not violate, but rather complements the existing “generally accepted” sequence of supercontinents in the history of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Barley, M.E., Bekker, A., and Krapez, B., Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen, Earth Planet. Sci. Lett., 2005, vol. 238, pp. 156–171.

    Article  Google Scholar 

  2. Begg, G.C., Griffin, W.L., Natapov, L.M., et al., The lithospheric architecture of Africa: Seismic tomography, mantle petrology and tectonic evolution, Geosphere, 2009, vol. 5, pp. 23–50.

    Article  Google Scholar 

  3. Betts, P.G. and Giles, D., 1.6–1.5 Ga orogenies of Eastern Australia, Geol. Soc. Australia. Abstr., 2001, vol. 64, pp. 7–8.

    Google Scholar 

  4. Betts, P.G., Giles, D., Lister, G.S., and Frick, L.R., Evolution of Australian lithosphere, Australian J. Earth. Sci., 2002, vol. 49, no. 4, pp. 661–695.

    Article  Google Scholar 

  5. Bozhko, N.A., Supercontinental cycles, episodes of crust growth, and global geodynamic inversions during the bipolar Earth evolution, in Mater. soveshch. “Superkontinenty v geologicheskom razvitii dokembriya” (Proc. Conf. “Supercontinents during the Precambrian Geological Evolution”), Irkutsk, 2001, pp. 33–36.

  6. Bozhko, N.A, Supercontinents in the Earth’s history, in Mater. XL tekton. soveshch. “Fundamental’nye problemy tektoniki” (Proc. XL Tecton. Conf. “Fundamental Problems of Tectonics”), Moscow: GEOS, 2007.

  7. Bozhko, N.A., Supercontinental cyclicity in the Earth’s history, Moscow Univ. Geol. Bull., 2009, 2, pp. 13–27.

    Google Scholar 

  8. Hartmann, L.A., Liu, D., Wang, K., et al., Protolith age of Santa Maria Chico granulites dated on zircons from an associated amphibolite-facies granodiorite in southernmost Brazil, Anais Acad. Brasileira Ciências, 2008, vol. 8, no. 3, pp. 543–-551.

    Article  Google Scholar 

  9. Khain, V.E. and Bozhko, N.A., Istoricheskaya geotektonika. Dokembrii (Historical Geotectonics. Precambrian), Moscow: Nedra, 1988.

  10. Kositcin, N., Geodynamic synthesis of the Gawler Craton and Curnamona Province, Geosci. Australia. Record, 2010, vol. 27.

  11. Ma, X., Shu, L., Santosh, M., and Lid, J., Detrital zircon U–Pb geochronology and Hf isotope data from Central Tianshan suggesting a link with the Tarim Block: Implications on Proterozoic supercontinent history, Precambrian Res., 2012, vol. 206–207, pp. 1–16.

    Article  Google Scholar 

  12. Mansfeld, J. and Andersen, T., Formation of new crust in Scandinavia between 1.75 and 1.55 Ga as evident from the Gothian units of the Østfold-Akershus sector, SE Norway, J. Conf. Abstr. EUG 10 (28 March–1 April), 1999. vol. 4. no. 1.

  13. Meert, J.G., Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia, Gondwana Res., 2002, vol. 5, pp. 207–215.

    Article  Google Scholar 

  14. Meert, J.G. and Pandit, M.K., The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India, in Precambrian Basins of India: Stratigraphic and Tectonic Context. Geol. Soc. London, Mem., 2015, vol. 43, pp. 29–54.

  15. Meert, J.G. and Santosh, M., The Columbia supercontinent revisited, Gondwana Res., 2017, vol. 50, pp. 67–83.

    Article  Google Scholar 

  16. Menot, R-P., Peucat, J-J., Pelletier, A., and Fanning, M., New constrains on the Archean–Proterozoic evolution of the Terre Adelie-George V Land, East Antarctica, J. Conf. Abstr. EUG 10 (March 28–April 1, 1999), Strasbourg, France, 1999, vol. 4, no. 1.

  17. Mikhal’skii, E.V., Geology and evolution of the crust of East Antarctica in Proterozoic–Early Paleozoic, Doctoral (Geol.-Mineral.) Dissertation, Moscow, 2007.

  18. Pehrsson, S.J., Berman, R.G., Eglington, B., and Rainbird, R., Two Neoarchean supercontinents revisited: The case for a Rae family of cratons, Precambrian Res., 2013, vol. 232, pp. 27–43.

    Article  Google Scholar 

  19. Pesonen, L.J., Mertanen, S., and Veikkolainen, T., Paleo-Mesoproterozoic supercontinents—A paleomagnetic view, Geophysica, 2012, vol. 48, nos. 1–2, pp. 5–47.

    Google Scholar 

  20. Rogers, J.J.W. and Santosh, M., Configuration of Columbia, Mesoproterozoic supercontinent, Gondwana Res., 2002, vol. 2, pp. 5–22.

    Article  Google Scholar 

  21. Rogers, J.J.W. and Santosh, M., Continents and Supercontinents, Oxford: Oxford Univ. Press, 2004.

    Google Scholar 

  22. Sankaran, A.V., New explanation of the geological evolution of the Indian subcontinent, Current Sci., 1999, vol. 77, no. 3, pp. 331–333.

    Google Scholar 

  23. Seth, B., Armstrong, R.A., Brandt, S., et al., Mesoproterozoic U–Pb and Pb–Pb ages of granulites in NW Namibia: Reconstructing a complete orogenic cycle, Precambrian Res., 2003, vol. 126, pp. 147–168.

    Article  Google Scholar 

  24. Skar, O., Field relations and geochemical evolution of the Gothian rocks in the Kvamsay area, southern Western Gneiss Complex, Norway, Norg. Geol. Undersøkelse, 2000, vol. 437, pp. 5–23.

    Google Scholar 

  25. Stein, H.J., Hannah, J.L., Zimmerman, A., et al., A 2.5 Ga porphyry Cu–Mo–Au deposit at Malanjkhand, central India: Implications for Late Archaean continental assembly, Precambrian Res., 2004, vol. 134, pp. 189–226.

    Article  Google Scholar 

  26. Swain, G., Woodhouse, A., Hand, M., et al., Provenance and tectonic development of the late Archaean Gawler Craton, Australia; U–Pb zircon, geochemical and Sm–Nd isotopic implications, Precambrian Res., 2005, vol. 141, no. 3, pp. 106–136.

    Article  Google Scholar 

  27. Tkachev, A.V. and Rundqvist, D.V., Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity, Geol. Ore Deposits, 2016, vol. 58, no. 4, pp. 263–283.

    Article  Google Scholar 

  28. Wang, K., Li, J., Hao, J., et al., The Wutaishan orogenic belt within the Shanxi Province, northern China: a record of late Archaean collision tectonics, Precambrian Res., 1946, vol. 78, pp. 95–103.

    Article  Google Scholar 

  29. Zhao, G., Cawood, P.A., Wilde, S.A., and Sun, M., Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent, Earth. Sci. Rev., 2002, vol. 59, pp. 125–162.

    Article  Google Scholar 

  30. Zhao, G., Sun, M., Wilde, S.A., and Li, S., A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup, Earth. Sci. Rev., 2004, vol. 67, pp. 91–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Bozhko.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Bobrov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhko, N.A. On the Number of Proterozoic Supercontinents. Moscow Univ. Geol. Bull. 76, 600–605 (2021). https://doi.org/10.3103/S0145875221060028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875221060028

Keywords:

Navigation