Skip to main content
Log in

Optical Emission Spectroscopy Study of Plasma-Precursor Interactions in TiO2 Suspension Plasma Spray

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The influence of plasma power on liquid precursor decomposition in suspension plasma spray (SPS) is studied with optical emission spectroscopy (OES). The precursors consist in a suspension of titania nanoparticles (TiO2) in water. The precursor decomposition was observed through the emission of the titanium element and of the TiO molecule, from which temperature and density maps were plotted. The resulting coating phase and microstructure were determined with X-ray diffraction and scanning electron microscopy, respectively. OES results have been corelated to the microstructure and phase composition of the TiO2 coatings at three different powers. The aim of this study is to bring a new understanding of the precursor decomposition inside the plasma and to fathom the effect of the power on microstructure and phase. Results show that OES temperature maps alone are insufficient to understand the SPS process; atomic and molecular species densities maps are of prime importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fauchais P, Heberlein JVR, Boulos MI (2014) Thermal spray fundamentals. Springer, Boston

    Book  Google Scholar 

  2. Fauchais P, Montavon G (2010) Latest developments in suspension and liquid precursor thermal spraying. J Therm Spray Technol 19:226–239. https://doi.org/10.1007/s11666-009-9446-7

    Article  Google Scholar 

  3. Gitzhofer F, Bouyer E, Boulos MI (1997) Suspension Plasma Spraying US patent

  4. Chambard M, Marsan O, Charvillat C et al (2018) Effect of the deposition route on the microstructure of plasma-sprayed hydroxyapatite coatings. Surf Coat Technol 371:68–77. https://doi.org/10.1016/j.surfcoat.2019.01.027

    Article  CAS  Google Scholar 

  5. Schiller G, Muller M, Gitzhofer F (1998) Preparation of perovskite powders and coatings by RF-suspension plasma spraying. Proc Int Therm Spray Conf 2:1363–1367

    CAS  Google Scholar 

  6. Hou H, Veilleux J, Gitzhofer F, Wang Q, Liu Y (2019) Hybrid suspension/solution precursor plasma spraying of a complex Ba(Mg1/3Ta2/3)O3 perovskite: effects of processing parameters and precursor chemistry on phase formation and decomposition. J Therm Spray Technol 28:12–26. https://doi.org/10.1007/s11666-018-0797-9

    Article  CAS  Google Scholar 

  7. Mauer G, Vaßen R, Stöver D (2007) Comparison and applications of DPV-2000 and accuraspray-g3 diagnostic systems. J Therm Spray Technol 6:414–424. https://doi.org/10.1007/s11666-007-9047-2

    Article  CAS  Google Scholar 

  8. Aziz B, Gougeon P, Moreau C (2017) Temperature measurement challenges and limitations for in-flight particles in suspension plasma spraying. J Therm Spray Technol 26:1–13. https://doi.org/10.1007/s11666-017-0543-8

    Article  Google Scholar 

  9. Pateyron B, Calve N, Pawłowski L (2012) Influence of water and ethanol on transport properties of the jets used in suspension plasma spraying. Surf Coatings Technol 220:257–260. https://doi.org/10.1016/j.surfcoat.2012.10.010

    Article  CAS  Google Scholar 

  10. Jordan EH, Jiang C, Gell M (2015) The solution precursor plasma spray (SPPS) process: a review with energy considerations. J Therm Spray Technol 24:1153–1165. https://doi.org/10.1007/s11666-015-0272-9

    Article  CAS  Google Scholar 

  11. Joshi NK, Sahasrabudhe SN, Sreekumar KP, Venkatramani N (1997) Variation of axial temperature in thermal plasma jets. Meas Sci Technol 8:1146–1150. https://doi.org/10.1088/0957-0233/8/10/016

    Article  CAS  Google Scholar 

  12. Marotta A (1994) Determination of axial thermal plasma temperatures without Abel inversion. J Phys D Appl Phys 27:268–272. https://doi.org/10.1088/0022-3727/27/2/014

    Article  CAS  Google Scholar 

  13. Joshi NK, Sahasrabudhe SN, Sreekumar KP, Venkatramani N (2003) Axial variation of electron number density in thermal plasma spray jets. Eur Phys J D 26:215–219. https://doi.org/10.1140/epjd/e2003-00211-9

    Article  CAS  Google Scholar 

  14. Yugeswaran S, Selvaraja V (2006) Electron number density measurement on a DC argon plasma jet by stark broadening of Ar I spectral line. Vacuum 81:347–352. https://doi.org/10.1016/j.vacuum.2006.06.001

    Article  CAS  Google Scholar 

  15. Buchner P, Schubert H, Uhlenbusch J, Willee K (1999) Modeling and spectroscopic investigations on the evaporation of zirconia in a thermal rf plasma. Plasma Chem Plasma Process 19:341–362. https://doi.org/10.1023/A:1021816302453

    Article  CAS  Google Scholar 

  16. Benmansour M, Nikravech M, Morvan D, Amouroux J, Chapelle J (2004) Diagnostic by emission spectroscopy of an argon-hydrogen RF inductive thermal plasma for purification of metallurgical grade silicon. J Phys D Appl Phys 37:2966–2974. https://doi.org/10.1088/0022-3727/37/21/005

    Article  CAS  Google Scholar 

  17. Chingsungnoen A, Wilson JIB, Amornkitbamrung V, Thomas C, Burinprakhon T (2007) Spatially resolved atomic excitation temperatures in CH 4 /H 2 and C 3 H 8 /H 2 RF discharges by optical emission spectroscopy. Plasma Sources Sci Technol 16:434–440. https://doi.org/10.1088/0963-0252/16/3/002

    Article  CAS  Google Scholar 

  18. Dorier J-L, Guittienne P, Hollenstein C, Gindrat M, Refke A (2009) Mechanisms of films and coatings formation from gaseous and liquid precursors with low pressure plasma spray equipment. Surf Coatings Technol 203:2125–2130. https://doi.org/10.1016/j.surfcoat.2008.10.034

    Article  CAS  Google Scholar 

  19. Menneveux J, Veilleux J (2019) An optical emission spectroscopy study of plasma-precursor interactions in solution precursor plasma spray. J Therm Spray Technol 28:3–11. https://doi.org/10.1007/s11666-018-0795-y

    Article  CAS  Google Scholar 

  20. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  21. Toma FL, Bertrand G, Klein D, Meunier C, Begin S (2008) Development of photocatalytic active TiO2 surfaces by thermal spraying of nanopowders. J Nanomater. https://doi.org/10.1155/2008/384171

    Article  Google Scholar 

  22. Subramanian A, Wang HW (2012) Effect of hydroxyl group attachment on TiO 2 films for dye-sensitized solar cells. Appl Surf Sci 258:7833–7838. https://doi.org/10.1016/j.apsusc.2012.04.069

    Article  CAS  Google Scholar 

  23. Grant CD, Schwartzberg AM, Smestad GP, Kowalik J, Tolbert LM, Zhang JZ (2002) Characterization of nanocrystalline and thin film TiO2 solar cells with poly(3-undecyl-2,2’-bithiophene) as a sensitizer and hole conductor. J Electroanal Chem 522:40–48. https://doi.org/10.1016/S0022-0728(01)00715-X

    Article  CAS  Google Scholar 

  24. Kitano M, Tsujimaru K, Anpo M (2008) Hydrogen production using highly active titanium oxide-based photocatalysts. Top Catal 49:4–17. https://doi.org/10.1007/s11244-008-9059-2

    Article  CAS  Google Scholar 

  25. Li L, Yan J, Wang T et al (2015) Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun. https://doi.org/10.1038/ncomms6881

    Article  PubMed  PubMed Central  Google Scholar 

  26. Toma FL, Bertrand G, Chwa SO, Meunier C, Klein D, Coddet C (2015) Comparative study on the photocatalytic decomposition of nitrogen oxides using TiO2 coatings prepared by conventional plasma spraying and suspension plasma spraying. Surf Coatings Technol 200:5855–5862. https://doi.org/10.1016/j.surfcoat.2005.08.148

    Article  CAS  Google Scholar 

  27. Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl Catal A Gen 244:383–391. https://doi.org/10.1016/S0926-860X(02)00610-5

    Article  CAS  Google Scholar 

  28. Sharifi N, Ben Ettouil F, Moreau C, Dolatabadi A, Pugh M (2017) Engineering surface texture and hierarchical morphology of suspension plasma sprayed TiO2 coatings to control wetting behavior and superhydrophobic properties. Surf Coatings Technol 329:139–148. https://doi.org/10.1016/j.surfcoat.2017.09.034

    Article  CAS  Google Scholar 

  29. Vanevery K, Krane MJM, Trice RW et al (2011) Column formation in suspension plasma-sprayed coatings and resultant thermal properties. J Therm Spray Technol 20:817–828. https://doi.org/10.1007/s11666-011-9632-2

    Article  CAS  Google Scholar 

  30. National Institute of Standards and Technology (2020) http://physics.nist.gov/PhysRefData/ASD/lines_form.html. Accessed January 2020

  31. Irwin AW (1981) Polynomial partition function approximation of 344 atomic and molecular species. Astrophys J Suppl Ser 45:621–633

    Article  CAS  Google Scholar 

  32. Bourg F, Pellerin S, Morvan D, Amouroux J, Chapelle J (2002) Study of an argon-hydrogen RF inductive thermal plasma torch used for silicon deposition by optical emission spectroscopy. Sol Energy Mater Sol Cells 72:361–371. https://doi.org/10.1016/S0927-0248(01)00184-2

    Article  CAS  Google Scholar 

  33. Mauer G, Vaßen R (2012) Plasma spray-PVD: plasma characteristics and impact on coating properties. J Phys Conf Ser 406:12005. https://doi.org/10.1088/1742-6596/406/1/012005

    Article  CAS  Google Scholar 

  34. Parigger CG, Woods AC, Surmick DM, Gautam G, Witte MJ, Hornkohl JO (2015) Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim Acta Part B 107:132–138. https://doi.org/10.1016/j.sab.2015.02.018

    Article  CAS  Google Scholar 

  35. Hermann J, Perrone A, Dutouquet C (2001) Analyses of the TiO-γ system for temperature measurements in a laser-induced plasma. J Phys B At Mol Opt Phys 34:153–164. https://doi.org/10.1088/0953-4075/34/2/303

    Article  CAS  Google Scholar 

  36. Hollis K, Neiser R (1998) Analysis of the nonthermal emission signal present in a molybdenum particle-laden plasma-spray plume. J Therm Spray Technol 7:383–391. https://doi.org/10.1361/105996398770350864

    Article  CAS  Google Scholar 

  37. Vardelle M, Trassy C, Vardelle A, Fauchais P (1991) Experimental investigation of powder vaporization in thermal plasma jets. Plasma Chem Plasma Process 11:185–201. https://doi.org/10.1007/BF01447242

    Article  CAS  Google Scholar 

  38. Griem HR (1963) Validity of local thermal equilibrium in plasma spectroscopy. Phys Rev 131:1170. https://doi.org/10.1103/PhysRev.131.1170

    Article  Google Scholar 

  39. Sun XL, Tok AIY, Lim SL, Boey FYC, Kang CW, Ng HW (2008) Combustion-aided suspension plasma spraying of Y2O3 nanoparticles: synthesis and modeling. J Appl Phys. https://doi.org/10.1063/1.2841524

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hou H, Veilleux J, Gitzhofer F, Wang Q (2020) Study of the microstructural control of Ba(Mg1/3Ta2/3)O3 perovskite thermal barrier coating deposited by solution precursor plasma spray. Surf Coatings Technol 389:125633. https://doi.org/10.1016/j.surfcoat.2020.125633

    Article  CAS  Google Scholar 

  41. Qian L, Lin J, Xiong H (2010) Numerical modeling in radio frequency suspension plasma spray of zirconia powders. Plasma Chem Plasma Process 30:733–760. https://doi.org/10.1007/s11090-010-9247-2

    Article  CAS  Google Scholar 

  42. Jia L, Gitzhofer F (2009) Nano-particle sizing in a thermal plasma synthesis reactor. Plasma Chem Plasma Process 29:497–513. https://doi.org/10.1007/s11090-009-9196-9

    Article  CAS  Google Scholar 

  43. Tomaszek R, Znamirowski Z, Pawlowski L, Zdanowski J (2007) Effect of conditioning on field electron emission of suspension plasma sprayed TiO2 coatings. Vacuum 81:1278–1282. https://doi.org/10.1016/j.vacuum.2007.01.064

    Article  CAS  Google Scholar 

  44. Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal Chem 29:760–762. https://doi.org/10.1021/ac60125a006

    Article  CAS  Google Scholar 

  45. Mauer G, Guignard A, Vaßen R (2013) Plasma spraying of efficient photoactive TiO2 coatings. Surf Coatings Technol 220:40–43. https://doi.org/10.1016/j.surfcoat.2012.08.042

    Article  CAS  Google Scholar 

  46. Robinson BW, Tighe CJ, Gruar RI, Mills A, Parkin IP et al (2015) Suspension plasma sprayed coatings using dilute hydrothermally produced titania feedstocks for photocatalytic applications. J Mater Chem A 3:12680–12689. https://doi.org/10.1039/c4ta05397d

    Article  CAS  Google Scholar 

  47. Li Y, Ishigaki T (2002) Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt. J Cryst Growth 242:511–516. https://doi.org/10.1016/S0022-0248(02)01438-0

    Article  CAS  Google Scholar 

  48. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Veilleux.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menneveux, J., Veilleux, J. Optical Emission Spectroscopy Study of Plasma-Precursor Interactions in TiO2 Suspension Plasma Spray. Plasma Chem Plasma Process 42, 483–503 (2022). https://doi.org/10.1007/s11090-022-10236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10236-4

Keywords

Navigation