Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 20, 2022

Influence of n-alcohols on aqueous DTAB micelles studied by ultrasonic analysis

  • Kiran D. Patil

    Kiran D. Patil is a Research Associate in the Department of Chemistry, Uttamrao Patil College, Dahivel, (Maharashtra), India.

    , Gunavant H. Sonawane and Mahendra S. Borse EMAIL logo

Abstract

The influence of chain length of n-alcohols such as 1-butanol, 1-pentanol, 1-hexanol and 1-heptanol on cationic dodecyl trimethyl ammonium bromide (DTAB) micelles has been investigated. The effect of concentration was determined at alcohol concentrations of (10, 20, 30, 40 and 50) mM and at temperatures of 298.15 K, 303.15 K, 308.15 K and 313.15 K using ultrasonic velocity, density, viscosity and conductivity measurements. To study molecular interactions in micelles of various mixtures of DTAB and n-alcohols by using acoustical parameters, such as adiabatic compres-sibility (βad), intermicellar free length (L f ), acoustic impedance (Z), molar volume (V M ) have been calculated by using ultrasonic velocity (U) and density (ρ). With the help of the trends observed when varying these parameters, the molecular interactions and thus the micellar growth of mixed systems of DTAB and n–alcohol were discussed. Viscosity data such as absolute viscosity, viscous relaxation time, oil solubilization, foam stability and conductance data complemented the observed ultrasonic data.


Corresponding author: Mahendra S. Borse, Department of Chemistry, Uttamrao Patil Arts and Science College, Dahivel–Sakri, Dhule 424304, Maharashtra, India, E-mail:

About the author

Kiran D. Patil

Kiran D. Patil is a Research Associate in the Department of Chemistry, Uttamrao Patil College, Dahivel, (Maharashtra), India.

Acknowledgement

The authors are grateful to the Department of Chemistry, Uttamrao Patil College, Dahivel and Kisan Arts, Commerce and Science College, Parola, India for the laboratory facilities for the research work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Davis, B., Jordan, P. In Industrial Applications of Surfactants; Karsa, D. R., Eds. Royal Society of Chemistry: Cambridge, Vol. II, 1990; pp. 195–216. https://doi.org/10.1002/pi.4990240319.Search in Google Scholar

2. Kenny, F. J. In Industrial Applications of Surfactants; Karsa, D. R., Eds. Royal Society of Chemistry: Cambridge, Vol. II, 1990; pp. 366–94.Search in Google Scholar

3. Osman, M. M. Hexadecyl trimethyl ammonium bromide as an effective inhibitor for the corrosion of steel in sulphuric acid solution. Anti-Corros. Methods Mater. 1998, 45, 176–180. https://doi.org/10.1108/00035599810216894.Search in Google Scholar

4. Rosen, M. J., Mathias, J. H., Davenport, L. Aberrant aggregation behavior in cationic gemini surfactants investigated by surface tension, interfacial tension, and fluorescence methods. Langmuir 1999, 15, 7340. https://doi.org/10.1021/la9904096.Search in Google Scholar

5. Van der Voort, P., Mathieu, M., Mees, F., Vansant, E. F. Synthesis of high–quality MCM–48 and MCM–41 by means of the GEMINI surfactant method. J. Phys. Chem. B 1998, 102, 8847–8851. https://doi.org/10.1021/jp982653w.Search in Google Scholar

6. Ronin, G., Perrin, C., Guedat, P., Kremer, A., Camilleri, P., Kirby, A. Novel spermine-based cationic gemini surfactants for gene delivery. J. Chem Commun 2001, 21, 2234. https://doi.org/10.1039/b105936j.Search in Google Scholar PubMed

7. Zana, R. Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 1996, 12, 1208. https://doi.org/10.1021/la950691q.Search in Google Scholar

8. Borse, Mahendra., Devi, Surekha. Importance of head group polarity in controlling aggregation properties of cationic gemini surfactants. Adv. Colloid Interface Sci. 2006, 123, 387–399. https://doi.org/10.1016/j.cis.2006.05.017.Search in Google Scholar PubMed

9. Zana, R., Benrraou, M. Interactions between polyanions and cationic surfactants with two unequal alkyl chains or of the dimeric type. J. Colloid Interface Sci. 2000, 226, 286. https://doi.org/10.1006/jcis.2000.6823.Search in Google Scholar

10. Wang, X., Wang, J., Wang, Y., Yan, H., Li, P., Thomas, R. K. Effect of the nature of the spacer on the aggregation properties of gemini surfactants in an aqueous solution. Langmuir 2004, 20, 53. https://doi.org/10.1021/la0351008.Search in Google Scholar PubMed

11. Schutzler, T., Schindler, T., Goetz, K., Appavou, M., Linder, P., Prevost, S., Unruh, T. Concentration dependent morphology and composition of n–alcohol modified cetyltrimethylammonium bromide micelles. J. Phys. Condens. Matter 2018, 30, 495001.10.1088/1361-648X/aae9c3Search in Google Scholar PubMed

12. Shiao, S. Y., Chhabra, V., Patist, A., Free, M. L., Huibers, P. D. T., Gregory, A., Patel, S., Shah, D. O. Chain length compatibility effects in mixed surfactant systems for technological applications. Adv. Colloid Interface Sci. 1998, 74, 1. https://doi.org/10.1016/S0001-8686(97)00005-5.Search in Google Scholar

13. Dubey, N. CTAB aggregation in solutions of higher alcohols: thermodynamic and spectroscopic studies. J. Mol. Liq. 2013, 184, 60–67. https://doi.org/10.1016/j.molliq.2013.04.022.Search in Google Scholar

14. Shah, S. K. Chatterjee Bhattarai, the effect of methanol on the micellar properties of dodecyltrimethylammonium bromide (DTAB) in aqueous medium at different temperatures. J. Surfactants Deterg. 2016, 19, 201–207.10.1007/s11743-015-1755-xSearch in Google Scholar

15. Baglion, P., Keran, L. Structural effects of alcohol addition to sodium dodecyl sulfate micelles studied by electron spin–echo modulation of 5-doxylstearic acid spin probe. J. Phys. Chem. 1987, 91, 1516–1518. https://doi.org/10.1021/j100290a045.Search in Google Scholar

16. Aamodt, M., Landgren, M., Jonsson, B. Solubilization of uncharged molecules in ionic surfactant aggregates. J. Phys. Chem. 1992, 96, 945. https://doi.org/10.1021/j100181a075.Search in Google Scholar

17. Sudheesh, P., Nair, S. M., Sreejith, L. Tunable thermoreversible viscoelastic gel from self–assembly surfactants. Asian J. Appl. Sci. 2008, 1, 246. https://doi.org/10.3923/ajaps.2008.246.252.Search in Google Scholar

18. Kabir–ud–Din, Khan, Z. A., Kumar, S. A viscometric study of tuning micellar morphology by organic additives. Colloid Polym. Sci. 2008, 286, 335. https://doi.org/10.1007/s00396-007-1783-9.Search in Google Scholar

19. Lindemuth, P. M., Bertrand, G. L. Calorimetric observations of the transition of spherical to rodlike micelles with solubilized organic additives. J. Phys. Chem. 1993, 97, 7769. https://doi.org/10.1021/j100131a055.Search in Google Scholar

20. Zana, R. Aqueous surfactant-alcohol systems: a review. Adv. Colloid Interface Sci. 1995, 57, l. https://doi.org/10.1016/0001-8686(95)00235-I.Search in Google Scholar

21. Moreira, L. A., Firoozabadi, A. Thermodynamic modeling of the duality of linear 1-alcohols as cosurfactants and cosolvents in self-assembly of surfactant molecules. Langmuir 2009, 25, 12101. https://doi.org/10.1021/la9018426.10.1021/la9018426Search in Google Scholar PubMed

22. Sidim, T., Acar, G. Alcohols effect on critic micelle concentration of polysorbate and cetyl trimethyl ammonium bromine mixed solutions. J. Surfactants Deterg. 2013, 16, 60. https://doi: 10.1007/s11743-012-1429-x.10.1007/s11743-012-1429-xSearch in Google Scholar

23. Zana, R., Picot, C., Duplessix, R. Effect of alcohol on the properties of micellar systems. V. Small angle neutron scattering study. J. Colloid Interface Sci. 1983, 93, 43. https://doi.org/10.1016/0021-9797(83)90382-X.Search in Google Scholar

24. Michels, B., Waton, G. Effect of pentanol and salt on the fusion-scission kinetics for CTAB micelles. J. Phys. Chem. B 2003, 107, 1133. https://doi.org/10.1021/jp025600u.Search in Google Scholar

25. Hirsch, E., Candau, S., Zana, R. Micellar structure and intermicellar interactions in solutions of tetradecyltrimethylammonium bromide in the presence of 1-pentanol: light scattering and viscosity study. J. Colloid Interface Sci. 1984, 97, 318. https://doi.org/10.1016/0021-9797(84)90302-3.Search in Google Scholar

26. Zana, R., Yiv, S., Strazielle, C., Lianos, P. Effect of alcohol on the properties of micellar systems: I. Critical micellization concentration, micelle molecular weight and ionization degree, and solubility of alcohols in micellar solutions. J. Colloid Interface Sci. 1981, 80, 280. https://doi.org/10.1016/0021-9797(81)90177-6.Search in Google Scholar

27. Kuperkar, K. C., Mata, J. P., Bahadur, P. Effect of 1-alkanols/salt on the cationic surfactant micellar aqueous solutions a dynamic light scattering study. Colloids Surf. A: Physicochem. Eng. Aspects 2011, 380, 60. https://doi.org/10.1016/j.colsurfa.2011.02.019.Search in Google Scholar

28. Kumar, S., Khan, Z. A., Kabir-ud-Din. Micellar association in simultaneous presence of organic salts/additives. J. Surfactants Deterg. 2002, 5, 55. https://doi.org/10.1007/s11743-002-0205-1.Search in Google Scholar

29. David, S. L., Kumar, S., Kabir-ud-Din. Viscosities of cetylpyridinium bromide solutions (aqueous and aqueous KBr) in the presence of alcohols and amines. J. Chem. Eng. Data 1997, 42, 198. https://doi.org/10.1021/je960250.Search in Google Scholar

30. Lombardo, D., Kiselev, M. A., Magazù, S., Calandra, P. Amphiphiles self-assembly: Basic concepts and future perspectives of supramolecular approaches. Adv. Condens. Matter Phys. 2015, 1, Article ID 151683, 1–22. https://doi.org/10.1155/2015/151683.Search in Google Scholar

31. Karikalan, V., Paneerselvam, A., Vallalperuman, K. Physicochemical analysis on Cetylpyridinium chloride with alcohol solution at different temperatures by Ultrasonic, UV and FTIR Analysis. Digest J. Nanomater. Biostruct. 2018, 13, 115–128.Search in Google Scholar

32. Kargerova, A., Pekar, M. High–resolution ultrasonic spectroscopy study of interactions between hyaluronan and cationic surfactants. Langmuir 2014, 30, 11866–11872. https://doi.org/10.1021/la501852a.Search in Google Scholar PubMed

33. Chithralekha, N., Panneerselvam, A. Surfactant-alcohol interactions: an ultrasonic, UV and FTIR analysis. Vacuum 2019, 168, 108835. https://doi.org/10.1016/j.vacuum.2019.108835.Search in Google Scholar

34. Shipra, B., Nirmal, P., Nikunj, K., Asif, S., Pranav, I. Thermodynamic and acoustical studies of binary mixtures of diethyl malonate at 308.15 K. Phys. Chem. Liq. 2005, 43, 306–316. https://doi.org/10.1080/00319100500096940.Search in Google Scholar

35. Sannaningannavar, F. M., Navati, B. S., Ayachit, N. H. Studies on thermo-acoustic parameters of poly(ethylene glycol)-400 at different temperatures. J. Therm. Anal. Calorim. 2013, 112, 1573–1578. https://doi.org/10.1007/s10973-012-2724-5.Search in Google Scholar

36. Pandey, J. D., Dubey, G., Shukla, B. P., Dubey, S. N. Prediction of ultrasonic velocity and intermolecular free–length and their correlation with interaction in binary liquid mixtures. Pramana-J. Phys. 1991, 37, 497–503.10.1007/BF02846780Search in Google Scholar

37. Aminabhavi, T. M., Aralaguppi, M. I., Harogopud, S. B., Balundgi, R. H. Densities, viscosities, refractive indices and speed of sound for methyl acetoacetate + aliphatic alcohols. J. Chem. Eng. Data 1993, 38, 31–39.10.1021/je00009a008Search in Google Scholar

38. Shah, D. O. Significance of the 1:3 molecular ratio in mixed surfactant systems. J. Colloid Interface Sci. 1971, 37, 744–752. https://doi.org/10.1016/0021-9797(71)90353–5.10.1016/0021-9797(71)90353-5Search in Google Scholar

39. Karayil, J., Kumar, S., Hassan, P. A., Talmon, Y., Sreejith, L. Microstructural transition of aqueous CTAB micelles in the presence of long-chain alcohols. RSC Adv. 2015, 5, 12434–12441; doi: https://doi.org/10.1039/C4RA10052B.10.1039/C4RA10052BSearch in Google Scholar

40. Borse, M. S., Aswal, V. K., Goyal, P. S., Devi, S. G. Effect of bivalent malate on aggregation behaviour of butanediyl-1,4-bis(dodecyl hydroxyethyl methyl ammonium bromide) surfactant. Colloids Surf. A: Physicochem. Eng. Aspects 2007, 305, 10–16. https://doi.org/10.1016/j.colsurfa.2007.04.034.10.1016/j.colsurfa.2007.04.034Search in Google Scholar

41. Sharma, V., Borse, M., Devi, S., Dave, K., Pohnerkar, J., Prajapati, A. Oil solubilization capacity, liquid crystalline properties and Antibacterial activity of alkanolamine–based novel cationic surfactants. J. Dispersion Sci. Technol. 2005, 26, 421–427. https://doi:10.1081/DIS-200054563.10.1081/DIS-200054563Search in Google Scholar

Received: 2021-07-14
Accepted: 2021-09-20
Published Online: 2022-01-20
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/tsd-2021-2387/html
Scroll to top button