Skip to main content
Log in

Real time instability of flow close to a scour affected abutment

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

For centuries, the interaction between the transport and hydrographic networks represents a significant issue in a country such as France. For example, the French railway network includes 1700 river-crossing structures and an important length of embankments either forming river banks or adjacent to watercourses exposed to scouring processes. Recently, various cases highlight the importance and vulnerability of civil transport works in relation to their environmental hazards, e.g. floods, and therefore the need to develop integrated observation tools and warning systems in the aim both of optimizing the management system and of increasing the knowledge on real scour processes. This paper relies to a French research project named SSHEAR which objective is to improve understanding of the scouring process through the use of innovative observation tools and physical and numerical hydraulic modelling. This part of the project aims at improving continuous monitoring in order to follow the evolution of the scour processes of a given bridge or abutment. After a presentation of the experimental site, the instrumentation is described as well as its in situ implementation. The data analysis process is given and results are commented before the presentation of some perspectives part.

Highlights

  • Field study,

  • Scour,

  • Experience feed back.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Setra - Technical guide (1979) Watercourses and bridges

  2. Temez Pelaez JR (1988) Control de la erosion fluvial en puentes, Ministerio de Obras Publicas y transportes (in Spanish)

  3. Hoffmans G, Verheij HJ (1997) Scour Manual, A A Balkema Publishers, Netherlands, ISBN 13: 9789054106739

  4. May RPW, Ackers JC, Kirby AM (2002) Manual on scour at bridges and other hydraulic structures, CIRIA, United Kingdom, pp 225

  5. Guitelman A, del Valle Leiva A, Bebczuk AS (2006) Comparacion de métodos de calculo de erosion en puentes, III Congreso Iberoamericano sobre control de la erosion y los sedimentos, Buenos Aires

  6. Arneson LA, Zevenbergen LW, Lagasse PF, Clopper PE (2012) Evaluating scour at bridges, Report No. FHWA-HIF-12–003 HEC18

  7. SETRA (2013) Application guide of the technical instruction for the monitoring and maintenance of engineering structures - Foundations in aquatic sites, Fascicule 10 (in French)

  8. MEDDE (2015) Ministère de l’écologie, du développement durable et de l’énergie, Décret n° 2015–526 du 12 mai 2015 relatif aux règles applicables aux ouvrages construits ou aménagés en vue de prévenir les inondations et aux règles de sûreté des ouvrages hydrauliques. https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000030591079/

  9. Samizo M, Watanabe S, Sugiyama T, Okada K (2010) Evaluation of the structural integrity of bridge pier foundations using microtremors in flood conditions. Scour and Erosio 824–833

  10. Schall JD, Davies P (1999) Instrumentation for measuring scour at bridge piers and abutments TR News 203

  11. Prendergast L, Hester D, Gavin K, O’Sullivan J (2013) An investigation of the changes in the natural frequency of a pile affected by scour. J Sound Vib 332(25):6685–6702. https://doi.org/10.1016/j.jsv.2013.08.020

    Article  Google Scholar 

  12. Chang S-P, Yee J, Lee J (2009) Necessity of the bridge health monitoring system to mitigate natural and man-made disasters. Struct Infrastruct Eng 5(3):173–197. https://doi.org/10.1080/15732470601130378

    Article  Google Scholar 

  13. Boujia N, Schmidt F, Chevalier C, Siegert D, Pham van Bang D (2019) Effect of scour on the natural frequency responses of bridge piers: development of a scour depth sensor. Infrastructures 4:21. https://doi.org/10.3390/infrastructures4020021

    Article  Google Scholar 

  14. Larrarte F, Schmidt F, Boujia N, Vidal V, Bontemps A, de la Roque, Chevalier C (2019) Some elements about scale effect on scour studies, 38th IAHR world congress, Panama. https://www.iahr.org/library/infor?pid=3465

  15. Hunt (2009) Monitoring scour critical bridges, a synthesis of highway practice, NCHRP synthesis 396, https://trid.trb.org/view/908559

  16. Briaud JL, Hurlebaus S, Chang KA, Yao C, Sharma H, Yu O-Y, Darby C, Hunt BE, Price GR (2011) Realtime monitoring of bridge scour using remote monitoring technology. Technical report

  17. Fisher M, Chowdhury M, Khan A, Atamturktur S (2013) An evaluation of scour measurement devices. Flow Meas Instrum 33:55–67

    Article  Google Scholar 

  18. Prendergast LJ, Gavin K (2014) A review of bridge scour monitoring techniques. J Rock Mech Geotech Eng 6(2):138–149. https://doi.org/10.1016/j.jrmge.2014.01.007

    Article  Google Scholar 

  19. Khan AA, Huriye S, Atamturktur HS (2015) Real time measurement of scour depths around bridge piers and abutments. Final Report, Report No. FHWA-SC-14–05 HEC20

  20. Wang C, Yu X, Liang F (2017) A review of bridge scour: mechanism, estimation, monitoring and countermeasures. Nat Hazards 87:1881–1906. https://doi.org/10.1007/s11069-017-2842-2

    Article  Google Scholar 

  21. Michalis P, Xu Y, Valyrakis M (2020) Current practices and future directions of monitoring systems for the assessment of geomorphological conditions at bridge infrastructure, River Flow 2020. In : Uijttewaal et al (eds)

  22. Kang J (2011) Development and application of real-time bridge scour monitoring system. Engineering 3:978–985. https://doi.org/10.4236/eng.2011.310121

    Article  Google Scholar 

  23. De Falco F, Mele R (2002) The monitoring of bridges for scour by sonar and sedimetri. NDT E International 35(2): 117–123. https://doi.org/10.1016/S0963-8695(01)00031-7

  24. Hayden JT, Puleo JA (2011) Near real-time scour monitoring system: application to indian river inlet, Delaware. J Hydraul Eng 137(9):1037–1046. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000399

    Article  Google Scholar 

  25. Tapia Rodriguez G, Molina Aguilar JP, Perez Moarales GB, Torers Acosta AA (2012) Metodología para la medición de la velocidad de flujo en un río en el diagnóstico de la socavación en pilas de un puente, utilizando un dispositivo electrónico, Publicación Técnica No. 356, Instituto mexicano del transporte (in Spanish)

  26. Laursen EM, Toch A (1956) Scour around bridge piers and abutments, Iowa Highways Research Board, Ames, IA

  27. Barbhuiya AK, Dey S (2004) Local scour at abutments-A review. Sadhana 29:449–476. https://doi.org/10.1007/BF02703255

    Article  Google Scholar 

  28. Dey S, Barbhuiya AK (2006) Velocity and turbulence in a scour hole at a vertical-wall abutment. Flow Meas Instrum 17:13–21. https://doi.org/10.1016/J.Flowmeasinst.2005.08.005

    Article  Google Scholar 

  29. Dey S (2014) Fluvial hydrodynamics : hydrodynamic and sediment transport phenomena. Springer Editor 687. https://doi.org/10.1007/978-3-642-19062-9

  30. Chevalier C, Larrarte F, Schmidt F, Pham-Van-Bang D, Durand E, Gondret P, de la Roque S, Cheetham M, Hosseingholian M (2018) Research program SSHEAR: recent advances on the understanding and the control of scour phenomena. Ninth International Conference on Scour and Erosion (ICSE), Taipei, Taiwan

  31. Larrarte F, Chevalier C, Battist L, Chollet H (2020) Hydraulics and bridges: a French case study of monitoring of a bridge affected by scour. Flow Meas Instrum. https://doi.org/10.1016/j.flowmeasinst.2020.1017.83

    Article  Google Scholar 

  32. Le Barbu E, Larrarte F (2010) Acoustic profilers and urban pollutant fluxes. Eur J Environ Civ Eng 14(5):637–651. https://doi.org/10.3166/EJECE.14.637-651

    Article  Google Scholar 

  33. Cheng N-S (2007) Power-law index for velocity profiles in open channel flows. Adv Water Resour 30(2007):1775–1784. https://doi.org/10.1016/j.advwatres.2007.02.001

    Article  Google Scholar 

  34. Fisher S (2004) Développement d’une instrumentation ultrasonore pour la mesure des vitesses des liquides au-delà de la limite de Nyquist par une approche spectrale, Thèse de doctorat, Université de Strasbourg, p 213 (in French)

  35. Ubertone (2021) UVP Measurement Principle User Manual, rev 21/10/2021

  36. Nyantekyi-Kwakye B, Essel E-E, Dow K, Clark S-P, Tachie M-F (2021) Hydraulic and turbulent flow characteristics beneath a simulated partial icecover. J Hydraul Res 59(3):392–403. https://doi.org/10.1080/00221686.2020.1780493

    Article  Google Scholar 

  37. Muste M, Lee K, Kim D, Bacotiu C, Rojas OM, Cheng Z, QuinteroF. (2020) Revisiting hysteresis of flow variables in monitoring unsteady streamflows. J Hydraul Res 58(6):867–887. https://doi.org/10.1080/00221686.2020.1786742

    Article  Google Scholar 

  38. Coles D (1956) The low of the wake in the turbulent boundary layer. J Fluid Mech 1:191–226

    Article  Google Scholar 

  39. Nikuradse J (1950) Laws of flow in rough pipes, Translation in National AdvisoryCommittee for aeronautics, Technical Memorandum 1292. NACA, Washington, p 62

    Google Scholar 

  40. Despax A (2016) Incertitude des mesures de débit des cours d'eau au courantomètre. Amélioration des méthodes analytiques et apports des essais interlaboratoires, (Uncertainty in discharge measurements using the velocity-area method. Improvement of analytical methods and contribution of field inter-laboratory experiments.), Ph.D. thesis, Université Grenoble Alpes. (in French)

Download references

Acknowledgements

The authors thank Hugues Chollet, Louis Battist, Carlos Minatchy, Fabien Szymkiewicz of Université Gustave Eiffel Marne la Vallée (France) for their contribution to the in situ interventions, Mark Cheetham, Yannick Della Longa and SNCF Réseau staff in Limoges (France) for their safety and technical support related to river experiments.

Funding

This research was funded by Agence Nationale de la Recherche (French National Research Agency) within the project SSHEAR ANR-2014-CE03-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Larrarte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevalier, C., Larrarte, F. Real time instability of flow close to a scour affected abutment. Environ Fluid Mech 22, 495–510 (2022). https://doi.org/10.1007/s10652-022-09842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-022-09842-9

Keywords

Navigation