Skip to main content
Log in

Research on three-core photonic crystal fiber plasmonic sensor based on surface plasmon resonance with three V-groove microfluidic channel

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A three-core photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR) has been designed with silver film coated on the inner wall of a microfluidic detection channel with three V-grooves. The coupling characteristics and sensing properties of the proposed sensor are analyzed numerically using the full vector finite element method (FEM). The loss spectra and the sensing performance are found to be effectively tuned by the structure parameters of the plasmonic sensor. The simulation results show that an average wavelength sensitivity (WS) of 5413.3 nm/RIU is reached when the refractive index (RI) of the analyte lies in the range from 1.330 to 1.370, while the maximum WS achieves is 11400 nm/RIU, which occurs when the RI varies between 1.365 and 1.370, corresponding to a maximum RI resolution of 8.77 × 10–6 RIU. This is thus extremely sensitive to changes in analyte RI in the microfluidic channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted manuscript.

References

  1. Matsubara, K., Kawata, S., Minami, S.: Optical chemical sensor based on surface plasmon measurement. Appl. Opt. 27(6), 1160–1163 (1988)

    Article  ADS  Google Scholar 

  2. Verma, R.K., Suwalka, P., Yadav, J.: Detection of adulteration in diesel and petrol by kerosene using SPR based fiber optic technique. Opt. Fiber Technol. 43, 95–100 (2018)

    Article  ADS  Google Scholar 

  3. Wakamatsu, T., Saito, K.: Interpretation of attenuated-total-reflection dips observed in surface plasmon resonance. J. Opt. Soc. Am. B. 24(9), 2307–2313 (2007)

    Article  ADS  Google Scholar 

  4. Otupiri, R., Akowuah, E.K., Haxha, S.: Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications. Opt. Express 23(12), 15716–15727 (2015)

    Article  ADS  Google Scholar 

  5. Mowla, R., Wang, Y.H., Ma, S.T., et al.: Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance. BBA-Biomembranes. 1860(4), 878–886 (2018)

    Article  Google Scholar 

  6. Liedberg, B., Nylander, C., Lunström, I.: Surface plasmon resonance for gas detection and biosensing. Sensor. Actuat. A-Phys. 4, 299–304 (1983)

    Article  Google Scholar 

  7. Liedberg, B., Nylander, C., Lundstrom, I.: Biosensing with surface plasmon resonance–how it all started. Biosens. Bioelectron. 10(8), i–ix (1995)

    Article  Google Scholar 

  8. John, S.: Photonics: light control at will. Nature 460(7253), 337–337 (2009)

    Article  ADS  Google Scholar 

  9. Zhou, J.H., Wang, Y.Y., Zhang, L., et al.: Plasmonic biosensing based on non-noble-metal materials. Chinese Chem. Lett. 29(1), 54–60 (2018)

    Article  ADS  Google Scholar 

  10. Jiao, S.X., Gu, S.F., Yang, H.R., et al.: Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating. Appl. Opt. 57(28), 8350–8358 (2018)

    Article  ADS  Google Scholar 

  11. Salamon, Z., Macleod, H.A., Tollin, G.: Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. Biochim. Biophys. Acta 1331(2), 117–129 (1997)

    Article  Google Scholar 

  12. Goh, L.S., Kumekawa, N., Watanabe, K., et al.: Hetero-core spliced optical fiber SPR sensor system for soil gravity water monitoring in agricultural environments. Comput. Electron. Agr. 101(1), 110–117 (2014)

    Article  Google Scholar 

  13. Bergwerff, A.A., Van, K.F.: Surface plasmon resonance biosensors for detection of pathogenic microorganisms: strategies to secure food and environmental safety. J. Aoac. Int. 89(3), 826–831 (2006)

    Article  Google Scholar 

  14. Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)

    Article  Google Scholar 

  15. Russell, P.W.: Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  16. Islam, I., Ahmed, K., Paul, B.K., et al.: Ultra-high negative dispersion and nonlinearity based single mode photonic crystal fiber: design and analysis. J. Optics. 48(1), 18–25 (2019)

    Article  Google Scholar 

  17. Zhao, Y.Y., Li, S.G., Wang, X.Y., et al.: Design of a novel multi-channel photonic crystal fiber polarization beam splitter. Opt. Commun. 400, 79–83 (2017)

    Article  ADS  Google Scholar 

  18. Ajiki, Y., Kan, T., Matsumoto, K., Shimoyama, I.: Electrically detectable surface plasmon resonance sensor by combining a gold grating and a silicon photodiode. Appl. Phys. Express. 11(2), 022001 (2018)

    Article  ADS  Google Scholar 

  19. Fu, Y.B., Liu, M., Shum, P., et al.: An ultrahighly sensitive photonic crystal fiber based surface plasmon resonance sensor. Optik 212, 164649 (2020)

    Article  ADS  Google Scholar 

  20. Liu, H., Wang, M., Wang, Q., Li, H.W., Ding, Y., Zhu, C.H.: Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes. Opt. Fiber Technol. 45, 1–7 (2018)

    Article  ADS  Google Scholar 

  21. Liu, C., Su, W.Q., Liu, Q., Lu, X.L., Wang, F.M., Sun, T., Chu, P.K.: Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express. 26(7), 9039–9049 (2018)

    Article  ADS  Google Scholar 

  22. Liu, M., Yang, X., Shum, P., et al.: High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance. Appl. Opt. 57(8), 1883–1886 (2018)

    Article  ADS  Google Scholar 

  23. Kaur, V., Singh, S.: Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt. Fiber Technol. 48, 159–164 (2019)

    Article  ADS  Google Scholar 

  24. Liu, C., Wang, F.M., Lv, J.W., et al.: Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing. J. Nanophotonics. 9(1), 093050 (2015)

    Article  ADS  Google Scholar 

  25. Tong, K., Wang, F.C., Wang, M.T., et al.: Three-core photonic crystal fiber surface plasmon resonance sensor. Opt. Fiber Technol. 46, 306–310 (2018)

    Article  ADS  Google Scholar 

  26. Islam, S., Sultana, J., Dinovitser, A., et al.: A gold coated plasmonic sensor for biomedical and biochemical analyte detection. IEEE. (2018). https://doi.org/10.1109/IRMMW-THz.2018.8510018

    Article  Google Scholar 

  27. Jiao, S.X., Gu, S.F., Fang, H.R., et al.: Analysis of Dual-core photonic crystal fiber based on surface plasmon resonance sensor with segmented silver film. Plasmonics (2018). https://doi.org/10.1007/s11468-018-0846-8

    Article  Google Scholar 

  28. Shakya, A.K., Singh, S.: Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum. Opt. Commun. (2021). https://doi.org/10.1016/j.optcom.2020.126372

    Article  Google Scholar 

  29. Hassani, A., Skorobogatiy, M.: Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express. 14(24), 11616–11621 (2006)

    Article  ADS  Google Scholar 

  30. Hasan, M.R., Akter, S., Rifat, A.A., Rana, S., Ali, S.: A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics. 4(1), 0168 (2017)

    Google Scholar 

  31. Rifat, A.A., Haider, F., Ahmed, R., et al.: Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett. 43(4), 891–894 (2018)

    Article  ADS  Google Scholar 

  32. Islam, M.S., Islam, M.R., Sultana, J., et al.: Exposed core localized surface plasmon resonance biosensor. J. Opt. Soc Am. B. 36(8), 2306–2311 (2019)

    Article  ADS  Google Scholar 

  33. Warrensmith, S.C., Kostecki, R., Nguyen, L.V.: Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core micro-structured optical fibers. Opt. Express. 22(24), 29493–29504 (2014)

    Article  ADS  Google Scholar 

  34. Kumar, V.V.R., George, A., Reeves, W., et al.: Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express. 10(25), 1520–1525 (2002)

    Article  ADS  Google Scholar 

  35. Sarakinos, K., Alami, J., Konstantinidis, S.: High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf. Coat. Tech. 204(11), 1661–1684 (2010)

    Article  Google Scholar 

  36. Chen, W., Ahmed, H.: Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist. Appl. Phys. Lett. (1993). https://doi.org/10.1063/1.109609

    Article  Google Scholar 

  37. Fang, H.R., Wei, C.J., Wang, D., et al.: Research on photonic crystal fiber based on surface plasmon resonance sensor with segmented silver-titanium dioxide film. J. Opt. Soc. Am. B. (2020). https://doi.org/10.1364/JOSAB.373395

    Article  Google Scholar 

  38. Sazio, P.J., Amezcua-Correa, A., Finlayson, C.E., et al.: Microstructured optical fibers as high-pressure microfluidic reactors. Science 311(5767), 1583–1586 (2006)

    Article  ADS  Google Scholar 

  39. Shuai, B.B., Xia, L., Zhang, Y.T., et al.: A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt. Express. 20(6), 5900–5974 (2012)

    Article  Google Scholar 

  40. Jing, J.Y., Wang, Q., Wang, B.T.: Refractive index sensing characteristics of carbon nanotube-deposited photonic crystal fiber SPR sensor. Opt. Fiber Technol. 43, 137–144 (2018)

    Article  ADS  Google Scholar 

  41. Liu, Q., Li, S., Li, J., et al.: Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber. J. Lightwave. Tech. 34, 2484–2490 (2016)

    Article  ADS  Google Scholar 

  42. Yang, X.C., Lu, Y., Liu, B.L., et al.: Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2), 489–496 (2017)

    Article  Google Scholar 

  43. Gao, Y., Li, J.S., Li, S.G., et al.: Dual polarized optical sensing of microstructure fiber with pentagonal-lattice based on surface plasmon resonance in the near-IR spectrum. Optik 202, 163671 (2020)

    Article  ADS  Google Scholar 

  44. Fang, H.R., Wei, C.J., Yang, H.R., et al.: D-shaped photonic crystal fiber plasmonic sensor based on silver-titanium dioxide composite micro-grating. Plasmonics (2018). https://doi.org/10.1007/s11468-021-01468-9

    Article  Google Scholar 

  45. Pual, A.K., Sarkar, A.K., Islam, M.H., et al.: Dual core photonic crystal fiber based surface plasmon resonance biosensor. Optik 170, 400–408 (2018)

    Article  ADS  Google Scholar 

  46. Guo, Y., Zhang, S.H., Li, J.S., et al.: A sensor-compatible polarization filter based on photonic crystal fiber with dual-open-ring channel by surface plasmon resonance. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.05.074

    Article  Google Scholar 

  47. Fu, H., Zhang, M., Ding, J., et al.: A high sensitivity D-type surface plasmon resonance optical fiber refractive index sensor with graphene coated silver nano-columns. Optical Fiber Technol. 48, 34–39 (2019)

    Article  ADS  Google Scholar 

  48. Monfared, Y.E., Qasymeh, M.: Plasmonic biosensor for low-index liquid analyte detection using graphene-gssisted photonic crystal fiber. Plasmonics (2020). https://doi.org/10.1007/s11468-020-01308-2

    Article  Google Scholar 

  49. Li, T.S., Zhu, L.Q., Yang, X.C., et al.: A refractive index sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers. Sensors (2020). https://doi.org/10.3390/s20030741

    Article  Google Scholar 

  50. Tonga, K., Cai, Z., Wanga, J., et al.: D-type photonic crystal fiber sensor based on metal nanowire array. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165010

    Article  Google Scholar 

  51. Shakya, A.K., Singh, S.: Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum. Optics Commun. (2021). https://doi.org/10.1016/j.optcom.2020.126372

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant No. 61703090], the Natural Science Foundation of Jilin Province (Grant No. 10122578) and the Natural Research Fund of Science and Technology Department (Grant No. YDZJ202101ZYTS140).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SJ, XL, and XR. The validation, visualization, and first draft of the manuscript was written by XL. Data curation and visualization by HY, SX and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Xiaolei Ren.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All authors declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. We understand that the Corresponding Author is the sole contact for the Editorial process.

Consent to participate

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. All authors read and approved the final manuscript.

Consent for publication

We would like to draw the attention of the editor to the following publications of one or more of us that refer to aspects of the manuscript presently being submitted. Where relevant copies of such publications are attached. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, S., Li, X., Ren, X. et al. Research on three-core photonic crystal fiber plasmonic sensor based on surface plasmon resonance with three V-groove microfluidic channel. Opt Rev 29, 80–90 (2022). https://doi.org/10.1007/s10043-022-00723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00723-6

Keywords

Navigation