Skip to main content

Advertisement

Log in

Variable Selection Based on Gray Wolf Optimization Algorithm for the Prediction of Saponin Contents in Xuesaitong Dropping Pills Using NIR Spectroscopy

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose 

A rapid quantification method for the five saponins was developed based on near infrared (NIR) spectroscopy as a quality control strategy for the Xuesaitong dropping pills (XDP).

Methods

In this study, NIR spectroscopy coupled with partial least squares regression (PLSR) was used to predict the contents of the five saponins in XDPs, named Notoginsenoside R1 (R1), Ginsenoside Rg1 (Rg1), Ginsenoside (Re), Ginsenoside Rb1 (Rb1) and Ginsenoside Rd (Rd). In order to obtain more accurate and robust prediction models, the gray wolf optimizer (GWO) algorithm, a new swarm intelligence algorithm, combined with PLSR algorithm were used to select the NIR spectral feature of the XDPs samples. In addition, six variable selection methods, i.e. stability competitive adaptive reweighted sampling (sCARS), genetic algorithm (GA), Monte Carlo-uninformative variable elimination (MCUVE), successive projections algorithm (SPA), bootstrapping soft shrinkage (BOSS), and variable combination population analysis (VCPA), were compared with GWO algorithm.

Results 

The results showed that the GWO algorithm significantly improved the model prediction performance when compared with other variable selection methods. Finally, the stability of the calibration models were used as an index to evaluate the prediction performance of the models, and the results showed that the performance of the GWO was stable under 20 runs.

Conclusion

In summary, for the five saponins in XDPs, GWO, as an effective feature extraction algorithm for the NIR spectra, can significantly improve the prediction performance of the quantitative calibration model, so as to realize the rapid and accurate quantitative analysis of the saponins in XDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu CC, Xu, Wang WW, Wang B, Zhang T, Cui XM, Pu YQ, Li N. Analytical methods and biological activities of Panax notoginseng saponins: recent trends. J Ethnopharmacol. 2019;236:443–65. https://doi.org/10.1016/j.jep.2019.02.035

  2. Wang TL, An YQ, Yan BC, Yue RQ, Zhang TB, Ho HM, Ren TJ, Fung HY, Ma DL, Leung CH, Liu ZL, Pu JX, Han QB, Sun HD. Comprehensive quantitative analysis of Chinese patent dru YinHuang drop pill by ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry. J Pharm Biomed Anal. 2016;125:415–26. https://doi.org/10.1016/j.jpba.2016.04.008.

    Article  CAS  Google Scholar 

  3. Wu XD, Liu QY, Chen D, Qin WW, Lu BY, Bi QR, Wang Z, Jia YN, Tan NH. Identification of quality control markers in Suhuang antitussive capsule based on HPLC-PDA fingerprint and anti-inflammatory screening. J Pharmaceut Biomed. 2020;180. https://doi.org/10.1016/j.jpba.2019.113053

  4. Peng JJ, Li DX, Huang JY, Tong L, Yu BY. Simultaneous determination of saponins in dripping pills made from Astragali Radix and Panax notoginseng by UPLC-ELSD. Chin Herb Med. 2017;9(3):267–74. https://doi.org/10.1016/S1674-6384(17)60103-5.

    Article  Google Scholar 

  5. Wang H, Chen ML, Li J, Chen N, Chang YX, Dou ZY, Zhang YJ, Zhuang PW, Yang Z. Quality consistency evaluation of Kudiezi Injection based on multivariate statistical analysis of the multidimensional chromatographic fingerprint. J Pharmaceut Biomed. 2020; 177. https://doi.org/10.1016/j.jpba.2019.112868

  6. Hou YZ, Lian YL, Wu HG, Li MS, Hao YF, Li WL, Li Z. Quality control of Notopterygii rhizoma et radix using near infrared spectroscopy and chemometrics. Vib Spectrosc. 2020;111. https://doi.org/10.1016/j.vibspec.2020.103181

  7. Liu RH, Sun QF, Hu T, Li L, Nie L, Wang JY, Zhou WH, Zang HC. Multi-parameters monitoring during traditional Chinese medicine content process with near infrared spectroscopy and chemometrics. Spectrochim Acta A. 2018;192:75–81. https://doi.org/10.1016/j.saa.2017.10.068.

    Article  CAS  Google Scholar 

  8. Lan ZW, Zhang Y, Sun Y, Ji D, Wang SM, Lu TL, Cao H, Meng J. Rapid quantitative detection of the discrepant compounds in differently processed Curcumae Rhizoma products by FT-NIR combined with VCPA-GA technology. J Pharmaceut Biomed. 2021;195. https://doi.org/10.1016/j.jpba.2020.113837

  9. Wang A, Xie L. Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit. J Food Eng. 2014;143:17–24. https://doi.org/10.1016/j.jfoodeng.2014.06.023.

    Article  CAS  Google Scholar 

  10. Li LQ, Jin SS, Wang YJ, Liu Y, Shen SS, Li MH, Ma ZY, Ning JM, Zhang ZZ. Potential of smartphone-coupled micro NIR spectroscopy for quality control of green tea. Spectrochim Acta A. 2021;247. https://doi.org/10.1016/j.saa.2020.119096

  11. Wang YJ, Li MH, Ning JM, Zhang ZZ. Green analytical assay for the quality assessment of tea by using pocket-sized NIR spectrometer. Food Chem. 2021;345. https://doi.org/10.1016/j.foodchem.2020.128816

  12. Zou XB, Zhao JW, Malcolm JWP, Mel H, Mao HP. Variables selection methods in near-infrared spectroscopy. Anal Chim Acta. 2010;667(1–2):14–32. https://doi.org/10.1016/j.aca.2010.03.048.

    Article  CAS  Google Scholar 

  13. Jie DF, Xie LJ, Fu XP, Rao XQ, Ying YB. Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique. J Food Eng. 2013;118:387–92. https://doi.org/10.1016/j.jfoodeng.2013.04.027.

    Article  Google Scholar 

  14. Zhao J, Tian G, Qiu YY, Qu HB. Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques. Spectrochim Acta A. 2021;245. https://doi.org/10.1016/j.saa.2020.118878

  15. Guo ZM, Barimah AO, Shujat A, Zhang ZZ, Ouyang Q, Shi JY, El-Seedi HR, Zou XB, Chen QS. Simultaneous quantification of active constituents and antioxidant capability of green tea using NIR spectroscopy coupled with swarm intelligence algorithm. Lwt-Food Sci Technol. 2020;129. https://doi.org/10.1016/j.lwt.2020.109510

  16. Norgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB. Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl Spectrosc. 2000;54:413–9. https://doi.org/10.1366/0003702001949500.

    Article  CAS  Google Scholar 

  17. Araújo MCU, Saldanha TCB, Galvão RKH, Yoneyama T, Chame HC, Visani V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometr Intell Lab. 2001;57(2):65–73. https://doi.org/10.1016/S0169-7439(01)00119-8.

    Article  Google Scholar 

  18. Cai WS, Li YK, Shao XG. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometr Intell Lab. 2008;90:188–94. https://doi.org/10.1016/j.chemolab.2007.10.001.

    Article  CAS  Google Scholar 

  19. Yuan LM, Mao F, Huang GZ, Chen XJ, Wu D, Li SJ, Zhou XQ, Jiang QJ, Lin DP, He RY. Models fused with successive CARS-PLS for measurement of the soluble solids content of Chinese bayberry by vis-NIRS technology. Postharvest Biol Tec. 2020;169. https://doi.org/10.1016/j.postharvbio.2020.111308

  20. Jiang H, Zhang H, Chen QS, Mei CL, Liu GH. Identification of solid state fermentation degree with FT-NIR spectroscopy: comparison of wavelength variable selection methods of CARS and SCARS. Spectrochim Acta A. 2015;149:1–7. https://doi.org/10.1016/j.saa.2015.04.024.

    Article  CAS  Google Scholar 

  21. Li HH, Zhu JJ, Jiao TH, Wang B, Wei WY, Ali S, Ouyang Q, Zuo M, Chen QS. Development of a novel wavelength selection method VCPA-PLS for robust quantification of soluble solids in tomato by on-line diffuse reflectance NIR. Spectrochim Acta A. 2020;243. https://doi.org/10.1016/j.saa.2020.118765

  22. Ouyang Q, Wang L, Park B, Kang R, Chen QS. Simultaneous quantification of chemical constituents in matcha with visible-near infrared hyperspectral imaging technology. Food Chem. 2021;350. https://doi.org/10.1016/j.foodchem.2021.129141

  23. Nturambirwe JFI, Nieuwoudt HH, Perold WJ, Opara UL. Non-destructive measurement of internal quality of apple fruit by a contactless NIR spectrometer with genetic algorithm model optimization. Scientific African. 2019;3. https://doi.org/10.1016/j.sciaf.2019.e00051

  24. Kalivas JH, Roberts N, Sutter JM. Global optimization by simulated annealing with wavelength selection for ultraviolet-visible spectrophotometry. Anal Chem. 1989;61:2024–30. https://doi.org/10.1021/ac00193a006.

    Article  CAS  Google Scholar 

  25. Marini F, Walczak B. Particle swarm optimization (PSO). a tutorial. Chemometr Intell Lab. 2015;149:153–65. https://doi.org/10.1016/j.chemolab.2015.08.020

  26. Allegrini F, Olivieri AC. A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis. Anal Chim Acta. 2011;699:18–25. https://doi.org/10.1016/j.aca.2011.04.061

  27. Goodarzi M, Coelho LDS. Firefly as a novel swarm intelligence variable selection method in spectroscopy. Anal Chim Acta. 2014;852:20–7. https://doi.org/10.1016/j.aca.2014.09.045.

    Article  CAS  PubMed  Google Scholar 

  28. Yun YH, Li HD, Deng BC, Cao DS. An overview of variable selection methods in multivariate analysis of near-infrared spectra. Trends Anal Chem. 2019;113:102–15. https://doi.org/10.1016/j.trac.2019.01.018.

    Article  CAS  Google Scholar 

  29. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer Adv Eng Softw. 2014;69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.

    Article  Google Scholar 

  30. Niu PF, Niu SP, Liu N, Chang LF. The defect of the grey wolf optimization algorithm and its verification method. Knowl-Based Syst. 2019;171:37–43. https://doi.org/10.1016/j.knosys.2019.01.018.

    Article  Google Scholar 

  31. Zhang KY, Li QQ, Wang JJ, Geng JP, Cao P, Sui T, Wang X, Du YP. Stability competitive adaptive reweighted sampling (SCARS) and its applications to multivariate calibration of NIR spectra. Chemometr Intell Lab. 2012;112:48–54. https://doi.org/10.1016/j.chemolab.2012.01.002.

    Article  CAS  Google Scholar 

  32. Li HD, Liang YZ, Xu QS, Cao DS. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal Chim Acta. 2009;648:77–84. https://doi.org/10.1016/j.aca.2009.06.046.

    Article  CAS  PubMed  Google Scholar 

  33. Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data sets. J Chemometr. 2000;14:643–55. https://doi.org/10.1002/1099-128X(200009/12)14:5/6%3c643::AID-CEM621%3e3.0.CO;2-E.

    Article  CAS  Google Scholar 

  34. Leardi R, González AL. Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometr Intell Lab. 1998;41(2):195–207. https://doi.org/10.1016/S0169-7439(98)00051-3.

    Article  CAS  Google Scholar 

  35. Mehmood T, Liland KH, Snipen L, Sæbø S. A review of variable selection methods in partial least squares regression. Chemometr Intell Lab. 2012;118:62–9. https://doi.org/10.1016/j.chemolab.2012.07.010.

    Article  CAS  Google Scholar 

  36. Deng BC, Yun YH, Cao DS, Yin YL, Wang WT, Liu HM, Luo QY, Liang YZ. A bootstrapping soft shrinkage approach for variable selection in chemical modeling. Anal Chim Acta. 2016;908:63–74. https://doi.org/10.1016/j.aca.2016.01.001.

    Article  CAS  PubMed  Google Scholar 

  37. Yun YH, Wang WT, Deng BC, Lai GB, Liu XB, Ren DB, Liang YZ, Fan W, Xu QS. Using variable combination population analysis for variable selection in multivariate calibration. Anal Chim Acta. 2015;862:14–23. https://doi.org/10.1016/j.aca.2014.12.048.

    Article  CAS  PubMed  Google Scholar 

  38. Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Posrharvest Biol Tec. 2007;46(2):99–118. https://doi.org/10.1016/j.postharvbio.2007.06.024.

    Article  Google Scholar 

  39. Liang L, Wei LL, Fang GG, Xu F, Deng YJ, Shen KZ, Tian QW, Wu T, Zhu BP. Prediction of holocellulose and lignin content of pulp wood feedstock using near infrared spectroscopy and variable selection. Spectrochim Acta A. 2020;225. https://doi.org/10.1016/j.saa.2019.117515

  40. Wang SF, Ye S, Cheng YY. Separation and on-line concentration of saponins from Panax notoginseng by micellar electrokinetic chromatography. J Chromatogr A. 2006;1109(2):279–84. https://doi.org/10.1016/j.chroma.2006.01.023.

    Article  CAS  PubMed  Google Scholar 

  41. Li SN, Hou YZ, Peng L, Li P, Cai X, Li Z, Li WL. Study on determination of five saponins in Xuesaitong dropping pills by micellar electrokinetic chromatography and evaluation method of batch quality consistency. Chin J Chin Mater Med. 2021; 46(21):73–79. https://doi.org/10.19540/j.cnki.cjcmm.20210423.301

  42. Kennard RW, Stone LA. Computer aided design of experiments. Technometrics. 1969;11:137–48. https://doi.org/10.1080/00401706.1969.10490666.

    Article  Google Scholar 

  43. Xu QS, Liang YZ. Monte Carlo cross validation. Chemometr Intell Lab. 2001;56(1):1–11. https://doi.org/10.1016/S0169-7439(00)00122-2.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Nature Science Foundation of China (No. 82074276), Tianjin Science and technology project (No. 20ZYJDJC00090), and National S&T Major Project of China (No. 2018ZX09201011). Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine. (No. ZYYCXTD-D-202002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenlong Li or Zheng Li.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Gao, X., Li, S. et al. Variable Selection Based on Gray Wolf Optimization Algorithm for the Prediction of Saponin Contents in Xuesaitong Dropping Pills Using NIR Spectroscopy. J Pharm Innov 18, 43–59 (2023). https://doi.org/10.1007/s12247-022-09620-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09620-6

Keywords

Navigation