Skip to main content
Log in

The Cellular Behavior, Intracellular Signaling Profile and Nuclear-Targeted Potential Functions of Porcine Growth Hormone (pGH) in Swine Testicular Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Porcine growth hormone (pGH) has many important biological functions and roles, and the biological activity of pGH is closely related with its cell behavior and characteristics. However, so far, the behavior of pGH in swine testicular cell remains unclear. For this, in the current work, the swine testicular cell line (ST) was used as an in vitro model, and CLSM (Confocal laser scanning microscope), IFA (Indirect immunofluorescence assay), FCM (Flow cytometry) and WB (Western-blotting) were used to explore the pGH’s cell behivior and function, and the results showed that pGH and GHR could internalize into ST cell and transported to the nucleus. Furthermore, we studied the internalization kinetics of pGH and GHR on ST cell, and found that pGH and GHR internalizes into ST cell in a time-dependent manner. More importantly, we also investigated the potential molecular functions of pGH-GHR after it entered into the cell nuclei. The results indicated that nuclear-localized GHR could participate in cell proliferation by regulating the signal intensity of STAT5. In summary, our current research shows that the nuclear-localized pGH-GHR participates in the cell proliferation of ST cell, which lays a solid foundation for further research on the regulatory effect of pGH on testicular tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data and materials are available for publication. Data related to the paper can be obtained from the corresponding author, based on reasonable requirements.

References

  1. Brooks, A. J., & Waters, M. J. (2010). The growth hormone receptor: Mechanism of activation and clinical implications. Nature Reviews Endocrinology, 6(9), 515–525

    Article  CAS  PubMed  Google Scholar 

  2. Li, W., Lan, H., Liu, H., Fu, Z., Yang, Y., Han, W., Guo, F., Liu, Y., Zhang, H., Liu, J., & Zheng, X. (2013). The activation and differential signalling of the growth hormone receptor induced by pGH or anti-idiotypic monoclonal antibodies in primary rat hepatocytes. Molecular and Cellular Endocrinology, 376(1–2), 51–59

    Article  CAS  PubMed  Google Scholar 

  3. Waxman, D. J., & O’Connor, C. (2006). Growth hormone regulation of sex-dependent liver gene expression. Molecular Endocrinology, 20(11), 2613–2629

    Article  CAS  PubMed  Google Scholar 

  4. Waters, M. J., Hoang, H. N., Fairlie, D. P., Pelekanos, R. A., & Brown, R. J. (2006). New insights into growth hormone action. Journal of Molecular Endocrinology, 36(1), 1–7

    Article  CAS  PubMed  Google Scholar 

  5. Lan, H., Zheng, X., Khan, M. A., & Li, S. (2015). Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist. The International Journal of Biochemistry and Cell Biology, 68, 101–108

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, T., Goh, E. L., Graichen, R., Ling, L., & Lobie, P. E. (2001). Signal transduction via the growth hormone receptor. Cell Signaling, 13(9), 599–616

    Article  CAS  Google Scholar 

  7. Lan, H.-N., Jiang, H.-L., Li, W., Wu, T.-C., Hong, P., Li, Y. M., Zhang, H., Cui, H.-Z., & Zheng, X. (2015). Development and characterization of a novel anti-idiotypic monoclonal antibody to growth hormone, which can mimic physiological functions of growth hormone in primary porcine hepatocytes. Asian-Australasian Journal of Animal Sciences, 28(4), 573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Figueiredo, M. A., Boyle, R. T., Sandrini, J. Z., Junior, A., & Marins, L. F. (2016). High level of GHR nuclear translocation in skeletal muscle of a hyperplasic transgenic zebrafish. Journal of Molecular Endocrinology, 56(1), 47

    Article  CAS  PubMed  Google Scholar 

  9. Mertani, H. C., Raccurt, M., Abbate, A., Kindblom, J., Törnell, J., Billestrup, N., Usson, Y., Morel, G., & Lobie, P. E. (2003). Nuclear translocation and retention of growth hormone. Endocrinology, 144(7), 3182–3195

    Article  CAS  PubMed  Google Scholar 

  10. Harvey, S., Baudet, M. L., Murphy, A., Luna, M., Hull, K. L., & Aramburo, C. (2004). Testicular growth hormone (GH): GH expression in spermatogonia and primary spermatocytes. General and Comparative Endocrinology, 139(2), 158–167

    Article  CAS  PubMed  Google Scholar 

  11. Martínez-Moreno, C., López-Marín, L., Carranza, M., Giterman, D., Harvey, S., Arámburo, C., & Luna, M. (2014). Growth hormone (GH) and GH-releasing hormone (GHRH): Co-localization and action in the chicken testis. General and Comparative Endocrinology, 199, 38–45

    Article  PubMed  Google Scholar 

  12. Bingol-Kologlu, M., Bahadir, G. B., Vargun, R., Ilkay, H., Bagriacik, E. U., Yolbakan, S., Guven, C., Endogan, T., Hasirci, N., & Dindar, H. (2010). Effects of local and sustained release of FGF, IGF, and GH on germ cells in unilateral undescended testis in rats. Urology, 75(1), 223–228

    Article  PubMed  Google Scholar 

  13. Swanlund, D. J., N’Diaye, M. R., Loseth, K. J., Pryor, J. L., & Crabo, B. G. (1995). Diverse testicular responses to exogenous growth hormone and follicle-stimulating hormone in prepubertal boars. Biology of Reproduction, 53(4), 749–757

    Article  CAS  PubMed  Google Scholar 

  14. Ihle, J. N., Nosaka, T., Thierfelder, W., Quelle, F. W., & Shimoda, K. (1997). Jaks and Stats in cytokine signaling. Stem Cells, 15(Suppl), 1

    Google Scholar 

  15. Hainan, L., Huilin, L., Khan, M. A., Xin, Z., YuJiang, Y., Hui, Z., & Naiquan, Y. (2018). The basic route of the nuclear translocation porcine growth hormone (GH)-growth hormone receptor (GHR) complex (pGH/GHR) in porcine hepatocytes. General and Comparative Endocrinology, 266, 101–109

    Article  PubMed  Google Scholar 

  16. Chung, C. S., Etherton, T. D., & Wiggins, J. P. (1985). Stimulation of swine growth by porcine growth hormone. Journal of Animal Science, 60(1), 118–130

    Article  CAS  PubMed  Google Scholar 

  17. Vize, P. D., & Wells, J. R. (1987). Isolation and characterization of the porcine growth hormone gene. Gene, 55(2–3), 339–344

    Article  CAS  PubMed  Google Scholar 

  18. Lobie, P. E., Breipohl, W., Aragón, J. G., & Waters, M. J. (1990). Cellular localization of the growth hormone receptor/binding protein in the male and female reproductive systems. Endocrinology, 126(4), 2214–2221

    Article  CAS  PubMed  Google Scholar 

  19. van Kerkhof, P., Govers, R., Alves dos Santos, C. M., & Strous, G. J. (2000). Endocytosis and degradation of the growth hormone receptor are proteasome-dependent. Journal of Biological Chemistry, 275(3), 1575–1580

    Article  Google Scholar 

  20. Conway-Campbell, B. L., Wooh, J. W., Brooks, A. J., Gordon, D., Brown, R. J., Lichanska, A. M., Chin, H. S., Barton, C. L., Boyle, G. M., Parsons, P. G., Jans, D. A., & Waters, M. J. (2007). Nuclear targeting of the growth hormone receptor results in dysregulation of cell proliferation and tumorigenesis. Proceedings of the National Academy Sciences of the United States of America, 104(33), 13331–13336

    Article  CAS  Google Scholar 

  21. Conway-Campbell, B. L., Brooks, A. J., Robinson, P. J., Perani, M., & Waters, M. J. (2008). The extracellular domain of the growth hormone receptor interacts with coactivator activator to promote cell proliferation. Molecular Endocrinology, 22(9), 2190–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lobie, P. E., Mertani, H., Morel, G., Morales-Bustos, O., Norstedt, G., & Waters, M. J. (1994). Receptor-mediated nuclear translocation of growth hormone. Journal of Biological Chemistry, 269(33), 21330–21339

    Article  CAS  Google Scholar 

  23. Lan, H., Liu, H., Hong, P., Li, R., & Zheng, X. (2018). Porcine growth hormone induces the nuclear localization of porcine growth hormone receptor. Asian-Australasian Journal of Animal Sciences, 31(4), 499–504

    Article  CAS  PubMed  Google Scholar 

  24. Lobie, P. E., Sadir, R., Graichen, R., Mertani, H. C., & Morel, G. (1999). Caveolar internalization of growth hormone. Experimental Cell Research, 246(1), 47–55

    Article  CAS  PubMed  Google Scholar 

  25. van Kerkhof, P., Sachse, M., Klumperman, J., & Strous, G. J. (2001). Growth hormone receptor ubiquitination coincides with recruitment to clathrin-coated membrane domains. Journal of Biological Chemistry, 276(6), 3778–3784

    Article  Google Scholar 

  26. Yang, N., Huang, Y., Jiang, J., & Frank, S. J. (2004). Caveolar and lipid raft localization of the growth hormone receptor and its signaling elements: impact on growth hormone signaling. Journal of Biological Chemistry, 279(20), 20898–20905

    Article  CAS  Google Scholar 

  27. Strous, G. J., van Kerkhof, P., Govers, R., Ciechanover, A., & Schwartz, A. L. (1996). The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. The EMBO Journal, 15(15), 3806–3812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strous, G. J., & Govers, R. (1999). The ubiquitin-proteasome system and endocytosis. Journal of Cell Science, 112(Pt 10), 1417–1423

    Article  CAS  PubMed  Google Scholar 

  29. Lobie, P. E., Wood, T. J., Chen, C. M., Waters, M. J., & Norstedt, G. (1994). Nuclear translocation and anchorage of the growth hormone receptor. Journal of Biological Chemistry, 269(50), 31735–31746

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.Z. thanks S.L. (The Third Operating Room, Jilin University First Hospital, Changchun, China, 130118) and all colleagues for assistance with this study.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 30162022).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and H.L. conceived and designed the experiments. Y.Z., Q.Z., and D.W. performed the experiments. Y.Z., M.W., S.L., and X.Z. analyzed the data. H.L. and S.L. (The Third Operating Room, Jilin University First Hospital, Changchun, China, 130118) contributed reagents/materials/analysis tools. Y.Z. and H.L. contributed to the writing of the manuscript.

Corresponding author

Correspondence to Hainan Lan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, Q., Wu, D. et al. The Cellular Behavior, Intracellular Signaling Profile and Nuclear-Targeted Potential Functions of Porcine Growth Hormone (pGH) in Swine Testicular Cells. Cell Biochem Biophys 80, 403–414 (2022). https://doi.org/10.1007/s12013-022-01068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01068-2

Keywords

Navigation