Skip to main content
Log in

Effects of habitat complexity on trophic interactions of three congeneric fish species

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Habitat complexity can substantially alter trophic relationships, such as competitive and predatory interactions, between fish species. This study aimed to evaluate how trophic interactions between congeneric fish species (Serrapinnus calliurus, S. heterodon and S. notomelas) are affected by habitat complexity provided by macrophytes. The following predictions were tested: (1) the composition of the diets of congeneric fish species differs between high- and low-complexity habitats and between habitats of the same category; (2) species show higher trophic niche breadth in sites with greater habitat complexity; and (3) trophic niche overlap between congeneric species pairs is low in macrophyte stands because of greater food availability. Sampling was conducted between November 2011 and July 2012 in five floodplain lakes of the Baía River, a tributary of the upper Paraná River. The degree of habitat complexity was categorised as high (with macrophytes) or low (without macrophytes). The stomach contents of the three species sampled from sites of high- or low-complexity habitat were analysed. Diet variation depended on habitat complexity. The median trophic niche breadth of the three congeneric species was low, but their diets showed higher variability in sites of high-complexity habitat. Significant differences in trophic niche overlap were observed in two species pairs when comparing sites of high- and low-complexity habitat. Habitat complexity directly affected trophic interactions between the fish species, which may favour their coexistence through trophic niche segregation. Our study emphasises the importance of habitat complexity in mediating trophic interactions between congeneric species and clarifies the coexistence of ecologically similar fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Agostinho AA, Thomaz SM, Gomes LC, Baltar SLSMA (2007) Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquat Ecol 41:611–619

    Article  CAS  Google Scholar 

  • Akhurst DJ, Jones GB, Clark M, Reichelt-Brushett A (2017) Effects of fish and macrophytes on phytoplankton and zooplankton community structure in a subtropical freshwater reservoir. Limnologica 62:5–18

    Article  CAS  Google Scholar 

  • Alexander ME, Dick JTA, O’Connor NE, Haddaway NR, Farnsworth KD (2012) Functional responses of the intertidal amphipod Echinogammarus marinus: effects of prey supply, model selection and habitat complexity. Mar Ecol Prog Ser 468:191–202

    Article  Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Andrade MC, Fitzgerald DB, Winemiller KO, Barbosa PS, Giarrizzo T (2019) Trophic niche segregation among herbivorous serrasalmids from rapids of the lower Xingu River, Brazilian Amazon. Hydrobiologia 829:265–280

    Article  CAS  Google Scholar 

  • Arthington AH, Godfrey PC, Pearson RP, Karim F, Wallace J (2015) Biodiversity values of remnant freshwater floodplain lagoons in agricultural catchments: evidence for fish of the Wet Tropics Bioregion, northern Australia. Aquat Conserv Mar Freshw Ecosyst 25(3):336–352

    Article  Google Scholar 

  • Bicudo CEM, Bicudo RMT (1970) Algas de águas continentais brasileiras chave ilustrada para identificação de gêneros. Fundação Brasileira para o Desenvolvimento do Ensino de Ciências, São Paulo

    Google Scholar 

  • Bulla CK, Gomes LC, Miranda LE, Agostinho AA (2011) The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil. Neotrop Ichthyol 9:403–409

    Article  Google Scholar 

  • Burks RL, Lodge DM, Jeppesen E, Lauridsen TL (2002) Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshw Biol 47(3):343–365. https://doi.org/10.1046/j.1365-2427.2002.00824.x

    Article  Google Scholar 

  • Carniatto N, Fugi R, Cantanhêde G, Gubiani EA, Hahn NS (2012) Effects of flooding regime and diel cycle on diet of a small sized fish associated to macrophytes. Acta Limnol Bras 24:363–372. https://doi.org/10.1590/S2179-975X2013005000007

    Article  Google Scholar 

  • Carniatto N, Fugi R, Thomaz SM (2017) Highly segregated trophic niche of two congeneric fish species in Neotropical floodplain lakes. J Fish Biol 90(3):1118–1125. https://doi.org/10.1111/jfb.13236

    Article  CAS  PubMed  Google Scholar 

  • Carniatto N, Cunha ER, Thomaz SM, Quirino BA, Fugi R (2020) Feeding of fish inhabiting native and non-native macrophyte stands in a Neotropical reservoir. Hydrobiologia 847:1553–1563. https://doi.org/10.1007/s10750-020-04212-2

    Article  Google Scholar 

  • Casartelli M, Ferraguti C (2015) Influence of seasonality and rooted aquatic macrophyte on periphytic algal community on artificial substratum in a shallow tropical reservoir. Int Rev Hydrobiol 100:5–6. https://doi.org/10.1002/iroh.201401773

    Article  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chesson P (2000) General theory of competitive coexistence in spatially-varying environments. Teor Popul Biol 58:211–237

    Article  CAS  Google Scholar 

  • Clarke KR (1983) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Corrêa CE, Albrecht MP, Hahn NS (2011) Patterns of niche breadth and feeding overlap of the fish fauna in the seasonal Brazilian Pantanal, Cuiabá River basin. Neotrop Ichthyol 9(3):637–646

    Article  Google Scholar 

  • Correa SB, Winemiller KO (2014) Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95(1):210–224

    Article  PubMed  Google Scholar 

  • Cunha ER, Winemiller KO, Silva JCB, Lopes TM, Gomes LC, Thomaz SM, Agostinho AA (2019) α and β diversity of fishes in relation to a gradient of habitat structural complexity supports the role of environmental filtering in community assembly. Aquat Sci 81:38. https://doi.org/10.1007/s00027-019-0634-3

    Article  Google Scholar 

  • de Tezanos PP, O’Farrell I (2014) Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740:13–24. https://doi.org/10.1007/s10750-014-1943-0

    Article  CAS  Google Scholar 

  • Dias RM, Silva JCB, Gomes LC, Agostinho AA (2017a) Effects of macrophyte complexity and hydrometric level on fish assemblages in a Neotropical floodplain. Environ Biol Fishes 100:1–14

    Article  Google Scholar 

  • Dias RM, Ortega JCG, Gomes LC, Agostinho AA (2017b) Trophic relationships in fish assemblages of Neotropical floodplain lakes: selectivity and feeding overlap mediated by food availability. Iheringia Sér Zool. https://doi.org/10.1590/1678-4766e2017b035

    Article  Google Scholar 

  • Diehl S (1988) Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53:207

    Article  Google Scholar 

  • Farina S, Arthur R, Pagès JF, Prado P, Romero J, Vergés A, Hyndes G, Heck KL et al (2014) Differences in predator composition alter the direction of structure-mediated predation risk in macrophyte communities. Oikos 123:1311–1322

    Article  Google Scholar 

  • Gogola TM, Daga PS, Gubiani EA, da Silva PLR, Sanches PV (2016) The role of submerged trees in the early development of fishes in a Neotropical reservoir. J Fish Biol 89:355–368

    Article  CAS  PubMed  Google Scholar 

  • Gotelli NJ, Entsminger GL (2007) EcoSim: null models software for ecology. Version7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465. http://garyentsminger.com/ecosim.htm

  • Graça WJ, Pavanelli CS (2007) Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. EDUEM, Maringá

    Google Scholar 

  • Grossman GD (1986) Food resources partitioning in a rocky intertidal fish assemblage. J Zool 1:317–355

    Article  Google Scholar 

  • Hao B, Wu H, Jeppesen E, Li W (2018) The response of phytoplankton communities to experimentally elevated temperatures in the presence and absence of Potamogeton crispus. Algal Res 35:539–546. https://doi.org/10.1016/j.algal.2018.09.032

    Article  Google Scholar 

  • Hellawell LM, Abel R (1971) A rapid volumetric method for the analysis of the food of fishes. J Fish Biol 48:29–37

    Article  Google Scholar 

  • Hughes AR, Grabowski JH (2006) Habitat context influences predator interference interactions and the strength of resource partitioning. Oecologia 149:256–264

    Article  PubMed  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Jayaweera M, Asaeda T (1995) Impacts of environmental scenarios on chlorophyll-a in the management of shallow, eutrophic lakes following biomanipulation: an application of a numerical model. Ecol Eng 5:445–468

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Sondergaard M, Lauridsen T, Pedersen LJ, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343):151–164

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L, Schoengart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: definition, delineation and classification for research, sustainable management and protection. Aquat Conserv Mar Freshw Ecosyst 24:5–22

    Article  Google Scholar 

  • Kolasa J, Manne LL, Pandit SN (2012) Species–area relationships arise from interaction of habitat heterogeneity and species pool. Hydrobiologia 685:135–144

    Article  Google Scholar 

  • Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685:1–17

    Article  Google Scholar 

  • Kufel L, Czapla G, Pasztaleniec A, Strzałek M (2007) Constitutive allelochemicals from Stratiotes aloides L. affect both biomass and community structure of phytoplankton. Pol J Ecol 55:387–393

    Google Scholar 

  • Langton RW (1982) Diet overlap between Atlantic Cod, Gadus morhua, Siver Hake, Merluccius bilinearis and fifteen other Northwest Atlantic finfish. Fish Bull 80:745–759

    Google Scholar 

  • Letten AD, Ke PJ, Fukami T (2017) Linking modern coexistence theory and contemporary niche theory. Ecol Monogr 87:161–177. https://doi.org/10.1002/ecm.1242

    Article  Google Scholar 

  • Lopes TM, Cunha ER, Silva JCB, Behrend RDL, Gomes LC (2015) Dense macrophytes influence the horizontal distribution of fish in floodplain lakes. Environ Biol Fish 98:1741–1755

    Article  Google Scholar 

  • MacArthur R, Levins R (1967) Limiting similarity convergence and divergence of coexisting species. Am Nat 101:377e387

    Article  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609

    Article  Google Scholar 

  • Manatunge J, Asaeda T, Priyadarshana T (2000) The influence of structural complexity on fish–zooplankton interactions: a study using artificial submerged macrophytes. Environ Biol Fishes 58:425–438

    Article  Google Scholar 

  • Matthews WJ (1998) Patterns in freshwater fish ecology. Chapman & Hall, New York

    Book  Google Scholar 

  • Meerhoff M, Fosalba C, Bruzzone C, Mazzeo N, Noordoven W, Jeppesen E (2006) An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshw Biol 51:1320–1330

    Article  Google Scholar 

  • Meerhoff M, Iglesias C, Mello FT, Clemente JM, Jensen E, Lauridsen TL, Jeppesen E (2007) Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw Biol 52:1009–1021

    Article  Google Scholar 

  • Meschiatti AJ, Arcifa MS (2002) Early life stages of fish and the relationships with zooplankton in a tropical Brazilian reservoir: Lake Monte Alegre. Braz J Biol 62:41–50

    Article  CAS  PubMed  Google Scholar 

  • Mikkelson GM (2005) Niche-based versus neutral models of ecological communities. Biol Philos 20:557–566

    Article  Google Scholar 

  • Montiel-Martínez A, Ciros-Pérez J, Corkidi G (2015) Littoral zooplankton–water hyacinth interactions: habitat or refuge? Hydrobiologia 755:173–182

    Article  CAS  Google Scholar 

  • Mormul RP, Thomaz SM, Takeda AM, Behrend RD (2011) Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica 43:738–745

    Article  Google Scholar 

  • Mugnai R, Nessimian JL, Baptista DF (2010) Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Technical Books, Rio de Janeiro

    Google Scholar 

  • Mulderij G, Mooij WM, Smolders AJP, van Donk E (2005) Inhibition of phytoplankton by allelo-pathic substances from Stratiotes aloides. Aquat Bot 82:284–296

    Article  Google Scholar 

  • Murray GPD, Sillman RA, Gozlan RE, Britton JR (2013) Experimental predictions of the functional response of a freshwater fish. Ethology 119:751–761

    Article  Google Scholar 

  • Murray GPD, Sillman RA, Britton JR (2016) Habitat complexity and food item size modify the foraging behaviour of a freshwater fish. Hydrobiologia 766:321–332

    Article  Google Scholar 

  • Nunes LT, Morais RA, Longo GO, Sabino J, Floeter SR (2020) Habitat and community structure modulate fish interactions in a neotropical clearwater river. Neotrop Ichthyol. https://doi.org/10.1590/1982-0224-2019-0127

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, R. B., O’Hara GL Simpson, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package project. http://vegan.r-forge.r-project.org/

  • Ortega JCG, Thomaz SM, Bini LM (2018) Experiments reveal that environmental heterogeneity increases species richness, but they are rarely designed to detect the underlying mechanisms. Oecologia 188:11–22

    Article  PubMed  Google Scholar 

  • Ota RR, Depra GC, Graça WJ, Pavanelli CS (2018) Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotrop Ichthyol 16:e170094. https://doi.org/10.1590/1982-0224-20170094

    Article  Google Scholar 

  • Padial AA, Thomaz SM, Agostinho AA (2009a) Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624:161–170

    Article  Google Scholar 

  • Padial AA, Carvalho P, Thomaz SM, Boschilia SM, Rodrigues RB, Kobayashi JT (2009b) The role of an extreme flood disturbance on macrophyte assemblages in a Neotropical floodplain. Aquatic Sci 71:389–398

    Article  Google Scholar 

  • Pelicice FM, Agostinho AA (2006) Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir. Brazil Ecol Freshw Fish 15:10–19

    Article  Google Scholar 

  • Petry AC, Agostinho AA, Gomes LC (2003) Fish assemblages of tropical floodplain lagoons: exploring the role of connectivity in a dry year. Neotrop Ichthyol 1(2):111–119. https://doi.org/10.1590/S1679-62252003000200005

    Article  Google Scholar 

  • Piana PA, Gomes LC, Agostinho AA (2006) Comparison of predator–prey interaction models for fish assemblages from the neotropical region. Ecol Model 192:259–270

    Article  Google Scholar 

  • Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74

    Article  Google Scholar 

  • Pierre JISt, Kovalenko KE (2014) Effect of habitat complexity attributes on species richness. Ecosphere 5(2):1–10

    Article  Google Scholar 

  • Pusey BJ, Read MG, Arthington AH (1995) The feeding ecology of freshwater fishes in two rivers of the Australian wet tropics. Environ Biol Fishes 43:85–103

    Article  Google Scholar 

  • Quirino BA, Carniatto N, Gaiotto JV, Fugi R (2015) Seasonal variation in the use of food resources by small fishes inhabiting the littoral zone in a Neotropical floodplain lake. Aquat Ecol 49:431–440

    Article  Google Scholar 

  • Quirino BA, Teixeira de Mello F, Deosti S, Bonecker CC, Cardozo ALP, Yofukuji KY, Aleixo MHF, Fugi R (2021) Interactions between a planktivorous fish and planktonic microcrustaceans mediated by the biomass of aquatic macrophytes. J Plankton Res 43:1–15

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Röpke CP, Ferreira E, Zuanon J (2014) Seasonal changes in the use of feeding resources by fish in stands of aquatic macrophytes in an Amazonian floodplain, Brasil. Environ Biol Fishes 97:401–414

    Article  Google Scholar 

  • Ross ST (1986) Resource partitioning in fish assemblages: a review of field studies. Copeia 352–388

  • Scheinin M, Scyphers SB, Kauppi L, Heck KL, Mattila J (2012) The relationship between vegetation density and its protective value depends on the densities and traits of prey and predators. Oikos 121(7):1093–1102. https://doi.org/10.1111/j.1600-0706.2011.19941.x

    Article  Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    Article  CAS  PubMed  Google Scholar 

  • Silva JC, Gubiani EA, Neves MP, Delariva RL (2017) Coexisting small fish species in lotic neotropical environments: evidence of trophic niche differentiation. Aquat Ecol 51:275–288. https://doi.org/10.1007/s10452-017-9616-5

    Article  Google Scholar 

  • Sosnovsky A, Queirós R (2009) Effects of fish manipulation on the plankton community in small hypertrophic lakes from the Pampa Plain (Argentina). Limnologica 39:219–229

    Article  CAS  Google Scholar 

  • Strzałek M, Koperski P (2019) The effect of dense patches of Stratiotes aloides L. on the spatial structure of microcrustacean assemblages in an oxbow lake. Ecohydrol Hydrobiol 19:75–82

    Article  Google Scholar 

  • Teixeira de Mello F, Meerhoff M, Pekcan-hekim Z, Jeppesen E (2009) Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshw Biol 54:1202–1215

    Article  CAS  Google Scholar 

  • Teixeira de Mello F, De Oliveira VA, Loverde-Oliveira SM, Huszar VLM, Barquín J, Iglesias C, Silva TSF, Duque-Estrada CH et al (2016) The structuring role of free-floating plants on the fish community in a tropical shallow lake: an experimental approach with natural and artificial plants. Hydrobiologia 778:167–178

    Article  CAS  Google Scholar 

  • Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22(2):218–236

    Article  Google Scholar 

  • Uieda VS, Pinto TLF (2011) Feeding selectivity of ichthyofauna in a tropical stream: space-time variations in trophic plasticity. Community Ecol 12:31–39. https://doi.org/10.1556/comec.12.2011.1.5

    Article  Google Scholar 

  • Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390

    Article  Google Scholar 

  • Van Donk E, Van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72(3–4):261–274

    Article  Google Scholar 

  • Vandermeer JH (1972) Niche theory. Annual Rev Ecol Syst 3:107–132

    Article  Google Scholar 

  • VejřõÂková I, Eloranta AP, Vejřík L, Smejkal M, Čech M, Sajdlová Z, Frouzová J, Kiljunen M et al (2017) Macrophytes shape trophic niche variation among generalist fishes. PLoS ONE 12:1–14

    Google Scholar 

  • Warfe DM, Barmuta LA (2006) Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia 150:141–154

    Article  PubMed  Google Scholar 

  • Willis SC, Winemiller KO, Lopez Fernandez H (2005) Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142:284–295

    Article  CAS  PubMed  Google Scholar 

  • Winemiller KO (1989) Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81:225–241

    Article  PubMed  Google Scholar 

  • Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 18:737–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Wootton RL (1999) Ecology of teleost fishes. Kluwer Academic, London

    Google Scholar 

  • Wright DH (1983) Species-energy theory: an extension of species–area theory. Oikos 41:496–506

    Article  Google Scholar 

  • Yeager ME, Hovel KA (2017) Structural complexity and fish body size interactively affect habitat optimality. Oecologia 185:257–267. https://doi.org/10.1007/s00442-017-3932-2

    Article  PubMed  Google Scholar 

  • Yu J, Liu Z, He H, Zhen W, Guan B, Chen F, Li K, Zhong P, Teixeira-de-Melo F, Jeppesen E (2016) Submerged macrophytes facilitate dominance of omnivorous fish in a subtropical shallow lake: implications for lake restoration. Hydrobiologia 775(1):97–107

    Article  CAS  Google Scholar 

  • Zaret TM, Rand AS (1971) Competition in tropical stream fishes: support for the competitive exclusion principle. Ecology 52(2):336–342

    Article  Google Scholar 

  • Zavala-Camin LA (1996) Introdução aos estudos sobre alimentação natural em peixes. Eduem/Nupélia, Maringá

    Google Scholar 

Download references

Acknowledgments

We sincerely thank José Ricardo Gonçalves, Valdecir Casare, Francisco Alves Teixeira, Valdir Capati, Érica Ikedo, Wladimir Marques Domingues, João Dirço Latini and Sebastião Rodrigues for their help with the sampling. Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia) provided facilities for the research. AAA and LCG are grateful for the Bolsa de Produtividade em Pesquisa granted by CNPq; RMD, RMT and JCBS are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their fellowships. RMD was a postdoctoral fellow in the Programa Nacional de Pós Doutorado (PNPD/CAPES), Universidade Estadual de Maringá. We are also grateful to Programa de Excelência Acadêmica (PROEX), Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA) and Universidade Estadual de Maringá (UEM). Finally, we thank Dra Rosemara Fugi and Dra Larissa S. Pereira for critical reading of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Maria Dias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Vinicius Farjalla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, R.M., Tófoli, R.M., da Silva, J.C.B. et al. Effects of habitat complexity on trophic interactions of three congeneric fish species. Aquat Ecol 56, 877–889 (2022). https://doi.org/10.1007/s10452-022-09954-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-022-09954-w

Keywords

Navigation