Skip to content
BY 4.0 license Open Access Published by De Gruyter February 14, 2022

Application of Capacities to Space-Time Fractional Dissipative Equations II: Carleson Measure Characterization for Lq(+n+1,μ) −Extension

  • Pengtao Li EMAIL logo and Zhichun Zhai

Abstract

This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(+n+1,μ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new Lp–capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the Lp–capacity, including its dual form, the Lp–capacity of fractional parabolic balls, strong and weak type inequalities, are established.

1 Introduction

In this paper, we study the Carleson characterization of Lq(+n+1,μ) -extensions of Sobolev spaces and Lebesgue spaces via the following space-time fractional equation:

(1.1) {tβu(x,t)=ν(Δ)α/2u(x,t)(x,t)+n+1;u(x,0)=φ(x),xn.

with β ∈ (0, 1) and α > 0. Here the symbol tβ denotes the Caputo fractional derivative defined as

tβu(x,t)=1Γ(1β)0trur(x)dr(tr)β.

Carleson measures were introduced by L. Carleson [5] to characterize the interpolating sequences in the algebra H of bounded analytic functions in the open unit disc and to give a solution to the corona problem. In the viewpoint of geometry, a Carleson measure on a domain Ω can be seen as a measure that does not vanish at the boundary ∂Ω when compared to the surface measure on the boundary of Ω. In the field of harmonic analysis and the potential theory, Carleson measures are widely applied to the extension and the trace problem of function spaces. Let D denote the unit disc in the complex plane ℂ and µ be a Borel measure on D. For 1 ≤ p < ∞, let Hp(∂D) denote the Hardy space on the boundary of D and let Lp(D, µ) denote the Lebesgue space on D with respect to the measure µ. It is well known that the Poisson operator is bounded from Hp(∂D) to Lp(D, µ) if and only if µ is a Carleson measure, i.e., there exists a constant C > 0 such that, for every point x∂D and every radius r > 0,

(1.2) μ(ΩB(x,r))/|ΩB(x,r)|C,

where B(x, r) denotes the ball centered at x with radius r. In the setting of the upper half space +n+1 , an analogue conclusion holds, see for instance [12, Theorem 7.37].

In 1960s, the capacities related with function spaces were introduced to characterize the embedding or trace inequalities. Let C0(n) stand for all infinitely smooth functions with compact support in ℝn. For a nonnegative Borel measure µ on ℝn, to investigate the spectral problems for Schrödinger operators, Maz’ya first proved (cf. [14, 15]) that if 1 < pq and pl < n, then there exists a constant C such that

(1.3) uLq(n,μ)Cuh pl(n),uh pl(n)

holds if and only if

(1.4) sup{(μ(E))p/qcap(E,hpl):En,cap(E,hpl)>0}<.

Here hpl(n) is the completion of C0(n) with respect to fhpl(n):=(Δ)1/2fLp(n) , and cap(E,hpl) is the capacity of E associated with hpl(n) . Such embeddings like (1.3) are referred to as trace inequalities (cf. [3]). Meanwhile, (1.4) is called the isocapacitary inequality, see Maz’ya [16]. Since the pioneer work of Maz’ya in [14], other equivalent conditions of trace inequalities were established in [1, 3, 6, 15, 17, 20]. Especially, when 1 < p < q < ∞, E in (1.3) can be replaced by balls, see [3, Theorem 7.2.2]. When 0 < q < p and 1 < p < n/l, (1.3) holds if and only if the Wolff potential Wαμ()Lq(p1)/(pq)(μ), , see Cascante-Ortega-Verbitsky [6]. There exist other conditions involving no capacity, which are equivalent to (1.3), see, e.g., [17, 20]. These equivalent conditions were widely applied to harmonic analysis, the operator theory, function spaces, linear and nonlinear partial differential equations.

When extending a function φ from ℝn to +n+1 through PDEs, Xiao in [21] studied the Carleson measure characterization of embeddings of Sobolev spaces:

(1.5) u(x,t2)Lq(+n+1,μ)φLp(n),

where u(x, t) is the solution to the classical heat equation with the initial data φ(x). In [22], Xiao established the Carleson characterization of embeddings similar to (1.5) for the fractional Besov space Λ˙α1,1(n). . On the other hand, Xiao [22] also proved that Λ˙α1,1(n) embeds the Choquet space L1(H˜nα). . In [23], Xiao proved that some isocapacitary inequalities are equivalent to strong versions of classical Sobolev inequalities. In [24], Xiao established the equivalence of the fractional version of (1.3) to several geometric inequalities in terms of fractional capacities. Motivated by Xiao [21, 22], for the solution of the spatial fractional heat equations, Zhai in [25] provided the Carleson characterization of embeddings similar to (1.5) for fractional Sobolev spaces by fractional capacities. The Carleson characterization of embeddings similar to (1.5) for Lebesgue spaces was established by Chang-Xiao in [8] and Shi-Xiao in [18] using Lp−capacities. For the fractional Poisson extension, Li et al. [13] established the Carleson characterization for the embeddings of fractional Sobolev spaces and Lebesgue spaces via fractional capacities and Lp–capacities.

Motivated by the above mentioned works, in this paper, we provide the Carleson characterization of the Lq(+n+1,μ) -extension of Sobolev spaces and Lebesgue spaces via the solution to (1.1). For equation (1.1), the solution can be written as

u(x,t)=Rα,β(φ)(x,t):=nGt(xy)φ(y)dy,

where Gt(·) is the space-time fractional heat kernel. Recently, there has been an increasing interest in the fractional calculus. This is because time fractional operators are proving to be very useful for modeling purposes. For example, while the classical heat equation tu(x, t) = ∆u(x, t) is used for modeling heat diffusion in the homogeneous media, the fractional heat equations

(1.6) tβu(x,t)=Δu(x,t)

are used to describe heat propagation in the inhomogeneous media. It is known that as opposed to the classical heat equation, the equation (1.6) is known to exhibit the sub diffusive behaviour and is related with anomalous diffusion or diffusion in the non-homogeneous media, with random fractal structures.

Definition 1.1

Let γ ∈ (0, n) and p ∈ [1, n/γ]. The homogeneous Sobolev space Ẇγ,p(ℝn) is the completion of C0(n) with respect to the norm

φW˙γ,p(n):={(Δ)γ/2φLp(n),p(1,n/γ);(nΔhkφLp(n)p|h|n+pγdh)1/p,p=1orp=n/γ,γ(0,n),

where k = 1 + [γ], γ = [γ] + {γ} with [γ] ∈ 𝕑+, {γ} ∈ (0, 1) and

Δhkφ(x)={Δh1Δhk1φ(x),k>1;φ(x+h)φ(x),k=1.

Denote by T(O) the tent based on an open subset O of ℝn, i.e.,

T(O)={(x,r)+n+1:B(x,r)O}

with B(x, r) being the open ball centered at x ∈ ℝn with radius r > 0. The fractional Sobolev capacities are defined as follows.

Definition 1.2

Let γ ∈ (0, n) and p ∈ [1, n/γ].

  1. The fractional capacity of an arbitrary set S ⊂ ℝn, denoted by Capn(γ,p)(S) , is defined as

    Capn(γ,p)(S):=inf{φW˙γ,p(n)p:φC0(n)&φ1S},

    where 1S denotes the characteristic function of S.

  2. For t ∈ (0, ∞), the (p, γ)−fractional capacity minimizing function associated with both Ẇγ,p(ℝn) and a nonnegative measure µ on +n+1 , denoted by cpγ(μ,t) , is defined as

    cpγ(μ,t):=inf{Capn(γ,p)(O):boundedopenOn,μ(T(O))>t}.

In Lemma 2.5, we provide four standard estimates involving the capacity Capn(γ,p)() , measures and non-tangential maximal functions. Based on Lemma 2.2, we obtain an elementary Riesz integral upper estimate of the space-time fractional heat kernel Gt(·), see Lemma 2.6. In Section 3, given α > n, β ∈ (0, 1) and a nonnegative Radon measure µ on +n+1 , we establish several characterizations of the extension:

(1.7) Rα,βφ(x,tα/β)Lq(+n+1,μ)φW˙γ,p(n)

for 0 < γ < n, 1 ≤ p < n/γ and 1 < q < ∞. Our results exhibit that (1.7) holds if and only if

(1.8) {supt>0tp/qcpγ(μ;t)<,pq;0(tp/qcpγ(μ;t))q/(pq)dtt<,p>q,

see Theorems 3.1, 3.2, 3.5 and 3.7, respectively. Specially, for γ = 1, our results obtained in Section 3 characterize the Lq(+n+1,μ) -extension via the p-variational capacity and generalize [21, Theorem 1.1 & 1.2], see Theorems 3.4 & 3.6.

However, it can be seen from Lemma 2.6 that the above characterizations (1.8) are invalid for the case 0,p(ℝn), i.e., Lebesgue spaces Lp(ℝn). To investigate the extension:

Rα,β:Lp(n)Lq(+n+1,μ)

with µ being a nonnegative Radon measure on +n+1 . We introduce the Lp–capacity related to Rα,β which is defined as follows.

Definition 1.3

Let 1 ≤ p < ∞. For any subset K+n+1 , one defines

Cp(α,β)(E):=inf{fLp(n)p:f0&Rα,βf1E}.

In Section 4, we study some fundamental properties of the Lp(+n+1) -capacity Cp(α,β)() , and further, estimate the capacities of fractional parabolic balls Br0(α,β)(x0,t0) , see Proposition 4.3. The strong and weak type inequalities corresponding to Cp(α,β)() are also derived in Lemma 4.8. Finally, in Section 5, for λ > 0, define

κ(μ;λ):=inf{Cp(α,β)(K):compactK+n+1,μ(K)λ}.

We prove that the extension

Rα,β:Lp(n)Lq(+n+1,μ)

is bounded if and only if

(1.9) { supλ(0,)λp/qκ(μ;λ)<,1<pq<;0(λp/qκ(μ;λ))q/(pq)dλλ<,1<q<p<,

see Theorems 5.1 and 5.2, respectively.

We point out that the characterizations obtained in Sections 3 & 5 exhibit the relation between the differential property of functions and the order of capacities. Let 1 < p < q < ∞. For the case γ,p(ℝn), we prove in Theorem 3.1 that one of equivalent conditions of (1.7) is

supopenOn(μ(T(O)))p/qCapnγ(O)<.

Specially, letting O=B(x0,r0β) the ball centered at x0 with radius r0β , then

Capnγ(B(x0,r0β))r0β(nγ).

On the other hand, for the case Lp(ℝn), Theorem 5.1 shows that, under the assumption that t0rα, the extension

Rα,β(φ)Lq(+n+1,μ)φLp(n)

holds if and only if

(μ(Br(α,β)(x0,t0)))p/qrβn,(r,t0,x0)+×+×n.

The above analysis indicates that, in the Lq(+n+1,μ) -extensions of Sobolev / Lebesgue spaces via (1.1), the loss of derivatives of functions need to be compensated via enhancing the order of capacities.

Some notations:

  • Let Ω ⊆ ℝn. Throughout this article, we use C(Ω) to denote the spaces of all continuous functions on Ω. Let k ∈ ℕ+ ∪ {∞}. The symbol Ck(Ω) denotes the class of all functions f : Ω → ℝ with k continuous partial derivatives. Let C0(Ω) stand for all infinitely smooth functions with compact support in Ω.

  • For 1 ≤ p ≤ ∞, denote by p′ the conjugate number of p, i.e., 1/p + 1/p′ = 1. U ≃ V represents that there is a constant c > 0 such that c−1V ≤ U ≤ cV whose right inequality is also written as U ≲ V. Similarly, one writes V ≳ U for V ≥ cU.

  • For convenience, the positive constant C may change from one line to another and usually depends on the dimension n, α, β and other fixed parameters. For f𝒮 (ℝn), f^ means the Fourier transform of f.

2 Preliminaries on fractional heat kernels and Sobolev capacities

We first state some preliminaries on the space-time fractional heat kernel which will be used in the sequel. Let Xt denote a symmetric α stable process with density function denote by Kα,t(·). This is characterized through the Fourier transform which is given by

Kα,t^(ξ)=eνt|ξ|α.

Let D = {Dr, r ≥ 0} denote a β-stable subordinator and Et be its first passage time. It is known that the density of the time changed XEt is given by the Gt(x). By conditioning, we have

(2.1) Gt(x)=0Kα,t(s,x)fEt(s)ds,

where

fEt(x)=tβ1x11/βgβ(tx1/β),

where gβ(·) is the density function of D1, and is infinitely differentiable on the entire real line, with gβ(u) = 0 for u ≤ 0. Moreover,

gβ(u)K(β/u)(1β/2)/(1β)exp{|1β|(u/β)β/(β1)}asu0+,

and

gβ(u)βΓ(1β)uβ1asu.

While the above expressions will be very important, we will also need the Fourier transform of Gt(x):

Gt^(ξ)=Eβ(νtβ|ξ|α),

where

Eβ(x)=k=0xkΓ(1+βk)

and

11+Γ(1β)Eβ(x)11+Γ(1+β)1xforx>0.

Even though, we will be mainly using the representation given by (2.1), we also have another explicit description of the heat kernel. Using the convention ~ to denote the Laplace transform, we get

Gt^˜(x)=λβ1λβ+ν|ξ|α.

Inverting the Laplace transform yields

Gt^(ξ)=Eβ(ν|ξ|βtβ),

where

Eβ(x)=k=0xkΓ(1+βk),

is the Mittag-Leffler function. In order to invert the Fourier transform, we will make use of the integral

0cos(ks)Eβ,α(asμ)ds=πkH3,32,1[kμa|(1,μ),(1,1),(1,μ/2)(1,1),(α,β),(1,μ/2)],

where ℜ(α) > 0, β > 0, k > 0, a > 0, Hp,qm,n is the H-function given in [10, Definition 1.9.1, page 55] and the formula

12πeiξxf(ξ)dξ=1π0f(ξ)cos(ξx)dξ.

This gives the function as

Gt(x)=1|x|H3,32,1[|x|ανtβ|(1,α),(1,1),(1,α/2)(1,1),(1,β),(1,α/2)].

Remark 2.1

Specially, taking α = 2, we can get, by the reduction formula for the H-function,

Gt(x)={1|x|H1,11,0[|x|2νtβ|(1,2)(1,β)],β(0,1);1(4νπt)1/2exp(|x|24νt),β=1.

In [11], M. Foondun and E. Nane obtained the following estimate for Gt(·).

Proposition 2.2

([11, Lemma 2.1])

  1. There exists a positive constant C1 such that for all x ∈ ℝn

    Gt(x)C1min{tβn/α,tβ|x|n+α}.

  2. If we further suppose that α > n, then there exists a positive constant C2 such that for all x ∈ ℝn,

    Gt(x)C2min{tβn/α,tβ|x|n+α}.

Below we always assume that α > n. It can be deduced from (i) of Lemma 2.2 that

(2.2) Gt(x)tβ(|x|+tβ/α)n+α.

Also, a direct computation, together with change of variables, gives

(2.3) nGt(x)dxntβ(|x|+tβ/α)n+αdx1.

The following estimate is an immediate corollary of Lemma 2.2.

Lemma 2.3

Let 1 ≤ rp ≤ ∞ and φLr(ℝn). For α > n & t > 0, we have

Rα,β(φ)Lp(n)tnβ(1/r1/p)/αφLr(n).

Proof

Let q obey 1/r + 1/q = 1/p + 1. By Young’s inequality,

Rα,β(φ)Lp(n)=Gt*φLp(n)φLr(n)Gt()Lq(n).

Applying Lemma 2.2 and a direct computation, we get

Gt()Lq(n)(ntβq(|x|+tβ/α)q(n+α)dx)1/qtβn(1/q1)/α,

which implies that

Rα,β(φ)Lp(n)tβn(1/q1)/αφLr(n)=tβn(1/r1/p)/αφLr(n).

Below we state some basic properties of the capacities Capn(γ,p)() and refer the reader to [3, Secton 2] for the details.

Proposition 2.4

The following properties are valid.

  1. Capn(γ,p)()=0 .

  2. If K1K2 ⊂ ℝn, then Cap n(γ,p)(K1)Cap n(γ,p)(K2) .

  3. For any sequence {Kj}j=1 of subsets of +n+1 ,

    Capn(γ,p)(j=1Kj)j=1Capn(γ,p)(Kj).

  4. For any decreasing sequence {Kj}j=1 inn with K = ∩jKj and any increasing sequence {Ej}j=1 inn with E = ∪jEj, one has

    { limjCap n(γ,p)(Kj)=Cap n(γ,p)(K),limjCap n(γ,p)(Ej)=Cap n(γ,p)(E).

Let 𝔐+(+n+1) represent the class of all nonnegative Radon measures on +n+1 .

Lemma 2.5

Let α > n, β ∈ (0, 1) and γ ∈ (0, n). Given φγ,p(ℝn), p ≥ 1, s > 0, and μ𝔐+(+n+1) , define

Lsα,β(φ):={(x,t)+n+1:|Rα,βφ(x,tα/β)|>s}

and

Msα,β(φ):={yn:sup|yx|<t|Rα,βφ(x,tα/β)|>s}.

Then the following four statements are true.

  1. For any natural number k

    μ(Lsα,β(φ)T(B(0,k)))μ(T(Msα,β(φ)B(0,k))).

  2. For any natural number k,

    Capnγ,p(Msα,β(φ)B(0,k))cpγ(μ,μ(T(Msα,β(φ)B(0,k)))).

  3. There exists a constant θn,α > 0 such that

    sup|yx|<t|Rα,βφ(y,tα/β)|θn,α𝔐φ(x),xn,

    where 𝔐 denotes the Hardy-Littlewood maximal operator:

    𝔐φ(x)=supr>0rnB(x,r)|φ(y)|dy,xn.

  4. Let O be a bounded open set contained in Int ({x ∈ ℝn : φ(x) ≥ 1}). There exists a constant ηn,α > 0 such that if (x, t) ∈ T(O), then Rα,β(|φ|)(x, tα/β) ≥ ηn,α.

Proof

  1. Since sup|yx|<t |Rα,βφ(x, tα/β)| is lower semicontinuous on ℝn, we can see that Msα,β(φ) is an open subset of ℝn and

    {Lsα,β(φ)T(Msα,β(φ));μ(Lsα,β(φ))μ(T(Msα,β(φ))).

    Then

    μ(Lsα,β(φ)T(B(0,k)))μ(T(Msα,β(φ)T(B(0,k))))=μ(T(Msα,β(φ)B(0,k))).

  2. It follows from the definition of cpγ(μ;t) .

  3. Let Φt(x) := t nΦ(x/t) with Φ(x) = (|x| + 1)nα. By (2.2), it holds

    sup|yx|<t|Rα,βφ(y,tα/β)|C1sup|yx|<t|Φt*φ(y)|.

    Since Φ is radial, bounded, decreasing and integrable on ℝn, it follows from [19, page 57, Proposition] that

    sup|yx|<t| Φt*φ(y) |C2𝔐φ(x)

    and thus for a constant θn,α,

    sup|yx|<t|Rα,βφ(y,tα/β)|θn,α𝔐φ(x).

  4. For any (x, t) ∈ T(O), we have

    B(x,t)OInt({x:φ(x)>1}).

    It can be deduced from (i) of Proposition 2.2 that there exist σ and C such that

    inf{Gtα/β(x):|x|<σt}Ctn.

    Then

    Gtα/β*|φ|(x,t)CtnB(x,σt)Int({x:φ(x)1})|φ|(y)dy.

    If σ > 1, then

    B(x,σt)Int({x:φ(x)1})B(x,t)Int({x:φ(x)1})=B(x,t).

    If σ ≤ 1, then

    B(x,σt)Int({x:φ(x)1})=B(x,σt).

    Thus Gtα/β ★ |φ|(x, t) ≥ ηn,α for some constant ηn,α > 0.

Lemma 2.6

If α > n, β ∈ (0, 1), γ ∈ (0, n) and (x,t)+n+1, , then

nGtα/β(y)|yx|nγdy(t+|x|)γn.

Proof

Note that Gt(x)tβ(|x|+tβ/α)n+α. . Define

J(x,t)=ntα|yx|γn(|x|+t)n+αdy.

Via the change of variables: x −→ tx & y −→ ty, it is sufficient to show that

J(x,1)(1+|x|)γn.

Since J(0, 1) ≲ 1, we may assume that |x| > 0. Write J(x, 1) ≲ I1(x) + I2(x), where

{I1(x):=B(x,|x|/2)|yx|γn(|x|+1)n+αdy;I2(x):=n\B(x,|x|/2)|yx|γn(|x|+1)n+αdy.

Since |xy| ≤ |x|/2 implies that |y| ≃ |x|, we have

I1(x)(1+|x|)(n+α)B(x,|x|/2)|yx|γndy(1+|x|2)(n+α)/20|x|/2sγ1ds(1+|x|2)(n+α)/2|x|γ(1+|x|)γn.

If |xy| > |x|/2, then

I2(x)|x|γnn\B(x,|x|/2)1(|y|+1)(n+α)dy.

For |xy| > |x|/2, it holds |y| < 3|xy| and

I2(x)n\B(x,|x|/2)1(|y|+1)n+α|y|nγdy1.

So, I2(x) ≲ (1 + |x|)γ−n and J(x, 1) ≲ (1 + |x|)γ−n.

The following result provides the capacitary strong estimates for Capn(γ,p)() . For the proofs, we refer the readers to [4, 22] and the references therein.

Lemma 2.7

Let γ ∈ (0, n) and p ∈ [1, n/γ].

  1. For φC0(n) ,

    0Capn(γ,p)({xn:|f(x)|s})dspφW˙γ,p(n)p.

  2. For φC0(n) ,

    0Capn(γ,p)({xn:|𝔐φ(x)|s})dspφW˙γ,p(n)p.

For handling the endpoint case p = , we need the following Riesz potentials on ℝ2n, see Adam-Xiao [4] and Adam [2]. For γ ∈ (0, 2n),

Iγ(2n)*f(z):=2n|xy|γ2nf(y)dy,z2n.

For γ ∈ (0, 2n), the space ˙γp(2n) is defined as the set

{f:f=Iγ(2n)*φ,φLp(2n)}

with the norm f˙γp(2n):=Iγ(2n)*φ˙γp(2n)=φLp(2n) . Formally, we write ˙γp(2n)=Iγ(2n)*Lp(2n) .

The following result is a particular case of [2, Theorem 5.2. or [4, Theorem A].

Lemma 2.8

Let γ ∈ (0, n). There are a linear extension operator

:W˙γ,n/γ(n)˙2γn/γ(2n),

and a linear restriction operator

:˙2γn/γ(2n)W˙γ,n/γ(n)

such that ℜ𝔈 is the identity. Moreover,

  1. For φγ,n/γ(ℝn), f˙2γnγ(2n)φW˙γ,n/γ(n) .

  2. For g˙2γn/γ(2n) , gW˙γ,n/γ(n)g˙2γn/γ(2n) .

3 Lq(+n+1,μ) extension of Ẇγ,p(n)

In this section, we will show that the embedding (1.7) can be characterized by conditions in terms of fractional capacities. For 0 < p, q < ∞ and a nonnegative Radon measure µ on +n+1 , Lq,p(+n+1,μ) and Lq( +n+1,μ) denote the Lorentz space and the Lebesgue space of all functions on +n+1 , respectively, for which

gLq,p( +n+1,μ):={ 0(μ({ (x,t) +n+1:|g(x,t)|>s }))p/qdsp }1/p<

and

gLq( +n+1,μ):=( +n+1|g(x,t)|qdμ)1/q<,

respectively. Moreover, we denote by Lq,( +n+1,μ) the set of all µ–measurable functions g on +n+1 with

gLq,( +n+1,μ):=sups>0s(μ({ (x,t) +n+1:|g(x,t)|>s }))1/q<.

3.1 Lq( +n+1,μ) extension of Ẇγ,p(n) when p q

Theorem 3.1

Let α > n, β ∈ (0, 1). Let γ ∈ (0, n) when 1 ≤ pn/γ, pq < ∞ and μ𝔐+( +n+1) . Then the following statements are equivalent:

  1. Rα,βφ(x,tα/β)Lq,p( +n+1,μ)φW˙γ,p(n)φW˙γ,p(n) ;

  2. Rα,βφ(x,tα/β)Lq( +n+1,μ)φW˙γ,p(n)φW˙γ,p(n) ;

  3. Rα,βφ(x,tα/β)Lq,( +n+1,μ)φW˙γ,p(n)φW˙γ,p(n) ;

  4. supt>0tp/qc pγ(μ;t)< ;

  5. (μ(T(O)))p/qCap nγ,p(O) holds for any bounded open set O ⊆ ℝn.

Proof

The implications (i) ⇒ (ii) ⇒ (iii) can be deduced from

(sqμ(L sα,β(φ)))p/q(q0μ(L sα,β(φ))sq1ds)p/q0(μ(L sα,β(φ)))p/qdsp

since

qμ(L rα,β(φ))rq1ddr(0r(μ(L sα,β(φ)))p/qdsp)q/p.

Now, we prove (iii) ⇒ (v) ⇒ (i). If (iii) is true, i.e.,

Kp,q(μ)=supφC 0(n)&φW˙γ,p(n)>0sups>0s(μ({ (x,t) +n+1:|Rα,βφ(x,tα/β)|>s }))1/qφW˙γ,p(n)<,

then Lemma 2.5 implies

(3.1) (μ(T(O)))1/qKp,q(μ)φW˙γ,p(n)

for any fC 0(n) and any open set O ⊆ Int ({x ∈ ℝn : f(x) ≥ 1}). Thus (v) holds. For (v) ⇒ (i), denote

Qp,q(μ):=sup{ (μ(T(O)))p/qCap n(γ,p)(O):boundedopensetOn }<.

Lemmas 2.5 & 2.7 imply that

0(μ(L sα,β(φ)T(B(0,k))))p/qdsp0(μ(T(M sα,β(φ)B(0,k))))p/qdsp0(μ(T({xn:θn,α𝔐(φ)(x)>s}B(0,k))))p/qdspQp,q(μ)0Cap n(γ,p)({xn:θn,α𝔐(φ)(x)>s}B(0,k))dspQp,q(μ)0Cap n(γ,p)({xn:θn,α𝔐(φ)(x)>s})dspQp,q(μ)φ W˙γ,p(n)p

for any φC 0(n) . Letting k → ∞ reaches (i).

Now, we will prove (iii) ⇒ (iv) ⇒ (i). If (iii) is true, let O be a bounded open subset of Int({x ∈ ℝn, φ(x) ≥ 1}). Then

tp/q(Kp,q(μ))pCap n(γ,p)(O)

whenever t ∈ (0, µ(T(O))). So, tp/q(Kp,q(μ))pc pγ(μ;t) , which means (iv) is true.

Assume that (iv) is true. By Lemmas 2.5 & 2.7, for any φC 0(n) ,

0(μ(L sα,β(φ)T(B(0,k))))p/qdsp0(μ(L sα,β(φ)T(B(0,k))))p/qc pγ(μ;μ(L sα,β(φ)T(B(0,k))))Cap n(γ,p)(M sα,β(φ)B(0,k))dspsupt>0tp/qc pγ(μ;t)0Cap n(γ,p)({xn:θn,α𝔐(φ)(x)>s}B(0,k))dspsupt>0tp/qc pγ(μ;t)φ W˙γ,p(n)p,

which gives (i) via letting k → ∞.

Theorem 3.2

Let μ𝔐+( +n+1) , α > n, β ∈ (0, 1), γ ∈ (0, n), 1 < p < min{n/γ, q}, or 1 = pq < ∞. Then the following two statements are equivalent.

  1. For any φγ,p(ℝn),

    ( +n+1| Rα,βφ(x,tα/β) |qdμ(x,t))1/qφW˙γ,p(n).

  2. supxn,r>0(μ(T(B(x,r))))p/qCap n(γ,p)(B(x,r))<.

Proof

It is enough to prove that (ii) implies (iii) or (v) of Theorem 3.1. When 1 = pq < ∞, if (ii) holds, then

μ1,q=supxn,r>0(μ(T(B(x,r))))1/qCap n(γ,1)(B(x,r))<.

Suppose that a bounded open set O ⊆ ℝn is covered by a sequence of dyadic cubes {Ij} in ℝn with j|Ij|(nγ)/n< . It follows from [9, Lemma 4.1] that there exists another sequence of dyadic cubes {Jj} in ℝn such that

{ Int(Jj)Int(Ik)=,jk;kIk=jJj;j|Jj|1γ/nk|Ik|1γ/n;T(O)jT(Int(5nJj)).

Thus,

μ(T(O))μ1,qj|5nJj|q(nγ)/nμ1,q(k|Ik|(nγ)/n)q,

which implies

μ(T(O))μ1,qH nγ(O).

Here H d() is the d–dimensional Hausdorff capacity. Then, the classical result Cap n(γ,1)()H d() implies

μ(T(O))μ1,q(Cap n(γ,1)(O))q.

Thus, (v) of Proposition 3.1 holds.

When 1 < p < min{n/γ, q},

μp,q=supxn,r>0(μ(T(B(x,r))))p/qCap n(γ,p)(B(x,r))<.

Let φ0γ,p(ℝn and µs be the restriction of µ to L sα,β(W˙γ,p(n)) . For any φγ,p(ℝn), we have

|φ(x)|n|(Δ)γ/2φ(y)||xy|nγdy,xn.

Thus, Lemma 2.6 implies

sμ(L sα,β(φ0))L sα,β(φ0)| Rα,βφ0(x,tα/β) |dμ(x,t)L sα,β(φ0)| nGtα/β(y)φ0(xy)dy |dμ(x,t)L sα,β(φ0){ nGtα/β(y)(n| (Δ)γ/2φ0(z)) ||xyz|nγdz)dy }dμ(x,t)L sα,β(φ0){ n(nGtα/β(y)dy|y(xz)|nγ)| (Δ)γ/2φ0(z) |dz }dμs(x,t) +n+1{ n| (Δ)γ/2φ0(z) |(t+|xz|)nγdz }dμs(x,t)n| (Δ)γ/2φ0(z) |{ +n+1dμs(x,t)(t+|xz|)nγ }dzn| (Δ)γ/2φ0(z) |{ 0μs(T(B(z,r))rγn1dr) }dzJ(λ)+K(λ),

where

J(λ):=0λ{ n| (Δ)γ/2φ0(z) |μs(T(B(z,r))dz }rγn1dr

and

K(λ):=λ(n| (Δ)γ/2φ0(z) |μs(T(B(z,r))dz)rγn1dr.

Since Cap n(γ,p)(B(x,r))rnpγ , it follows from the definition of ‖µp,q and Hölder’s inequality that for 1/p + 1/p′ = 1,

μs(T(B(z,r)))(μs(T(B(z,r))))1/pμ p,qq/p2rq(npγ)/p2.

Thus we have

nμs(TB(x,r))dxrnμs(L sα,β(φ0))

and

J(λ)0λ{ n| (Δ)γ/2φ0(z) |(μs(T(B(z,r))))1/pμ p,qq/p2rq(npγ)/p2dz }rγn1drφ0W˙γ,p(n)μ p,qq/p20λ{ nμs(T(B(z,r)))dz }1/prq(npγ)/p2+γn1drφ0W˙γ,p(n)μ p,qq/p20λ(rnμs(T(B(z,r)))1/prq(npγ)/p2+γn1drφ0W˙γ,p(n)μ p,qq/p2(μ(L sα,β(φ0))1/pλ(qp)(npγ)/p2.

Similarly, we can obtain

K(λ)φ0W˙γ,pμ(L sα,β(φ0)λγn/p.

Thus,

(3.2) sμ(Lsα,β(φ0)φ0(,tα/β)W˙γ,pμs(Lsα,β(φ0))×{ λγn/p+μp,qq/p2(μs(Lsα,β(φ0)))1/pλ(qp)(npγ)/p2 }.

In (3.2), take

λ=μ p,q1/(pγn)(μs(L sα,β(φ0)))pq(npγ)

such that

λγn/p=μ p,qq/p2(μs(L sα,β(φ0)))1/pλ(qp)(npγ)/p2.

It holds

s(μ(L sα,β(φ0))1/qμ p,q1/pφ0W˙γ,p(n)

which implies (iii) of Proposition 3.1.

Let q = np/(n) and µ(x, t) = δ(x0,t0) be the Dirac measure at (x0, t0). If (x0, t0) ∈ T(B(x, r)), then δ(x0,t0)(T(B(x, r)) = 0. If (x0, t0) ∈ T(B(x, r)), then B(x0, t0) ⊆ B(x, r) and t 0nrn and so

δ(x0,t0)(T(B(x,r)))rnt 0n=r(npγ)q/pt 0n.

Then the equivalence Cap n(γ,p)(B(x,r))rnpγ implies

δ(x0,t0)T(B(x,r))p/qCap n(γ,p)(B(x,r))t 0np/q.

So,

δ(x0,t0)(T(B(x,r)))p,q=t 0pγn.

It follows from the proof of Proposition 3.2 that

|Rα,βφ(x0,t 0α/β)|δ(x0,t0)p,qφW˙γ,p(n).

Thus, we have the following decay estimate of the solution.

Corollary 3.3

Let α > n and β ∈ (0, 1). If φ0γ,p(ℝn, then for 1 ≤ p < n/γ and γ ∈ (0, n),

|Rα,βφ(x0,t0)|t 0β(pγn)/αφW˙γ,p(n)(x0,t0) +n+1.

Let capp(S) denote the p-variational capacity of an arbitrary set S ⊆ ℝn defined by

capp(S):=inf{ n|f(x)|pdx:fW˙1,p(n),SInt({xn:f(x)1}) },

where Int (E) stands for the interior of a set E ⊆ ℝn; cp(µ, t) denotes the corresponding p-variational capacity minimizing function of t ∈ (0, ∞) associated with a nonnegative measure µ on +n+1 :

cp(μ,t):=inf{capp(O):boundedopenOn,μ(T(O))>t}.

As an immediate corollary of Theorem 3.1. it holds

Theorem 3.4

Let α > n, β ∈ (0, 1). Assume that pq < ∞, 1 ≤ p < n and μ𝔐+( +n+1). . The following statements are equivalent:

  1. ( +n+1| Rα,βφ(x,tα/β) |qdμ(x,t))1/qφLp(n)φW˙1,p(n);

  2. supλ>0λ(μ({ (x,t) +n+1:| Rα,βφ(x,tα/β) |>λ }))1/qφLp(n)φW˙γ,p(n);

  3. supt>0tp/qcp(μ;t)<;

  4. sup{ (μ(T(O)))p/qcapp(O):boundedopenOn }.

3.2 Lq( +n+1,μ) extension of Ẇγ,p(n) when p > q

Theorem 3.5

Let α > n, β ∈ (0, 1), γ ∈ (0, n), 0 < q < p, 1 < pn/γ and μ𝔐+( +n+1) . Then the following statements are equivalent:

  1. ( +n+1| Rα,βφ(x,tα/β) |qdμ(x,t))1/qφW˙γ,p(n)φW˙γ,p(n);

  2. (3.3) 0(tp/qc pγ(μ;t))q/(pq)dtt<.

Proof

(ii) ⇒ (i). If (ii) holds, then

Ip,q(μ):=0(tp/qc pγ(μ;t))q/(pq)dtt<.

For each φC 0(n) , each j = 0, ±1, ±2, . . ., and each natural number k, Lemma 2.5 (iii) implies that

Cap n(γ,p)(M 2jα,β(φ)(B(0,k)))Cap n(γ,p)({ xn:θn,α𝔐φ(x)>2j }B(0,k)).

Define

{ μj,k(φ):=μ(T(M 2jα,β(φ)(B(0,k))));Sp,q,k(μ;φ):=j=(μj,k(φ)μj+1,k(φ))p/(pq)(Cap n(γ,p)(M 2jα,β(φ)(B(0,k))))q/(pq).

It follows from (ii) of Lemma 2.5 that

(Sp,q,k(μ;φ))(pq)/p(j=μ j,kp/(pq)(φ)μ j+1,kp/(pq)(φ)(c pγ(μ;μj,k(φ)))q/(pq))(pq)/p(01(c pγ(μ;s))q/(pq)dsp/(pq))(pq)/p(Ip,q(μ))(pq)/p.

On the other hand, By (ii) of Lemma 2.7 and (ii)–(iii) of Lemma 2.5, we can apply Hölder’s inequality to deduce that

T(B(0,k))|Rα,βφ(x,tα/β)|qdμ(x,t)=0μ(L sα,β(φ)T(B(0,k)))dsqj=2jq(μj,k(φ)μj+1,k(φ))(Sp,q,k(μ;φ))1q/p(j=2jpCap n(γ,p)(M 2j(φ)α,β(B(0,k)))q/p(Sp,q,k(μ;φ))1q/p(0Cap n(γ,p)({ xN:θn,α𝔐φ(x)>2j }(B(0,k))dsp)q/p(Sp,q,k(μ;φ))1q/pφ W˙γ,p(n)q.

So, we get

(T(B(0,k))|Rα,βφ(x,tα/β)|qdμ(x,t))1/q(Ip,q(μ))(pq)/pqφW˙γ,p(n).

Letting k → ∞ derives (1.7).

(i)⇒ (ii). If (i) holds, then

Cp,q(μ):=supφC 0(n)&φW˙γ,p(n)>01φW˙γ,p(n)( +n+1|Rα,βφ(x,tα/β)|qdμ(x,t))1/q<.

For each φC 0(n) with ‖φγ,p(ℝn) > 0, there holds

( +n+1|Rα,βφ(x,tα/β)|qdμ(x,t))1/qCp,q(μ)φW˙γ,p(n),

which indicates that

sups>0s(μ(L sα,β(φ)))1/qCp,q(μ)φW˙γ,p(n).

This, together with (iv) of Lemma 2.5, implies that for fixed φC 0(n) and any bounded open set O ⊆ Int({x ∈ ℝn : φ(x) ≥ 1}).

μ(T(O))C p,qq(μ)φ W˙γ,p(n)q.

The definition of c pγ(μ;t) implies that c pγ(μ;t)>0 . For t ∈ (0, ∞) and every j, there exists a bounded open set Oj ⊆ ℝn such that

{ Cap n(γ,p)(Oj)2c pγ(μ;2j);μ(T(Oj))>2j.

Below we divide the rest of the proof into two cases.

Case 1: p ∈ (1, n/γ). Since

Capn(γ,p)(S)inf{ g Lp(n)p:gC 0(n),g0,SInt({xn:Iγ*g(x)1}) },

there exists gjC 0(n) such that

{ Iγ*gj(x)1,xOj;gj Lp(n)p2Cap n(γ,p)(Oj)4c pγ(μ;2j).

For the integers i, k with i < k, define

gi,k=supijk(2jc pγ(μ;2j))1/(pq)gj.

Then gi,kLp(ℝn) with

gi,k Lp(n)pj=ik(2jc pγ(μ;2j))p/(pq)c pγ(μ;2j).

It is easy to see that for ijk, if xOj, then

Iγ*gi,k(x)(2jc pγ(μ;2j))1/(pq).

Set

ui,k(x,t)=Rα,β(Iγ*gi,k)(x,tα/β).

We can deduce from (iv) of Lemma 2.5 that there exists a constant ηn,α such that for (x, t) ∈ T(Oj),

|ui,k(x,t)|(2jc pγ(μ;2j))1/(pq)ηn,α.

Thus, with s=(2jc pγ(μ;2j))1/(pq)ηn,α2 ,

2jμ(T(Oj))μ(L sα,β(Iγ*gi,k(x))).

Equivalently, if s > 0 such that μ(L sα,β)(Iγ*gi,k(x))s , then

s>(2jc pγ(μ;2j))1/(pq)ηn,α2.

This indicates that

(Cp,q(μ)gi,kLp(n))q +n+1|ui,k(x,tα/β)|qdμ(x,t)0(inf{ s:μ(L sα,β)(Iγ*gi,k(x))s })qdsj=ik(inf{ s:μ(L sα,β)(Iγ*gi,k(x))2j })q2jj=ik2j(2jc pγ(μ;2j))q/(pq)(j=ik2jp/(pq)c pγ(μ;2j)q/(pq))(pq)/pgi,k Lp(n)q.

Thus,

j=ik2jp/(pq)c pγ(μ;2j)q/(pq)(Cp,q(μ))pq/(pq).

Case 2: p = n/γ. The definition of Capn(γ,p)() implies that there exists a positive function φjC0(n) such that φj ≥ 1 on Oj and

φjW˙γ,p(n)p2Capn(γ,p)(Oj)4cpγ(μ;2j).

By Lemma 2.8, there exists gi(·, ·) ∈ Lp(ℝ2n) such that

φj(x)=I2γ(2n)*gj(x,0)=φj(x)

and

I2γ(2n)*gj˙2γp(2n)=φj˙2γp(2n)φjW˙γ,p(n).

We can define gi,k similar to the previous case. It is easy to show that gi,kLp(ℝ2n) and I2γ(2n)*gi,k˙2γp(n) . Then Lemma 2.8 implies

I 2γ(2n)*gi,k W˙γ,p(n)pj=ik(2jc pγ(μ;2j))p/(pq)I 2γ(2n)*gi,k ˙p(2n)pj=ik(2jc pγ(μ;2j))p/(pq)φj W˙γ,p(n)pj=ik(2jc pγ(μ;2j))p/(pq)c pγ(μ;2j).

Then consider I 2γ(2n)*gi,k . Similar to the previous case, we can get

j=ik2jp/(pq)c pγ(μ;2j)q/(pq)(Cp,q(μ))pq/(pq).

Letting i, k → ∞, we reach

0(tp/qc pγ(μ;t))q/(pq)2jp/(pq)(c pγ(μ;2j))q/(pq)(Cp,q(μ))pq/(pq),

which implies (ii).

Similar to Theorem 3.4. letting γ = 1 in Theorem 3.5. we can obtain

Theorem 3.6

Let α > n, β ∈ (0, 1). Assume that 0 < q < p, 1 ≤ p < n and μ𝔐+( +n+1) . The following states are equivalent:

  1. ( +n+1| Rα,βφ(x,tα/β) |qdμ(x,t))1/qφLp(n)φW˙1,p(n);

  2. 0(tp/qcp(μ;t))q/(pq)dtt<.

    When q < p = 1, we can establish the following necessary conditions for the embedding (1.7).

Proposition 3.7

Let γ ∈ (0, 1), 0 < q < p = 1 and μ𝔐+( +n+1) . Then (i)(ii)(iii)(iv):

  1. Rα,βφ(x,tα/β)Lq( +n+1,μ)φW˙γ,1(n)φW˙γ,1(n) ;

  2. Rα,βφ(x,tα/β)Lq,( +n+1,μ)φW˙γ,1(n)φW˙γ,1(n) ;

  3. sup{ (μ(T(O)))p/qCap n(γ,p)(O):boundedopenOn }< ;

  4. Rα,βφ(x,tα/β)Lq,1( +n+1,μ)φW˙γ,1(n)φW˙γ,1(n) .

Proof

The proofs of (i) ⇒ (ii) ⇒ (iii) are similar to those of (ii) ⇒ (iii) ⇒ Theorem 3.1 (v). The implication (iii) ⇒ (iv) follows from the estimate

μ(L sα,β(φ))μ(T(M sα,β(φ)))μ(T({ xn:θn,α𝔐φ(x)>s }))(Cap n(γ,1)({ xn:θn,α𝔐φ(x)>s }))q,

which is a consequence of Lemma 2.5 and Theorem 3.1 (v).

4 Lp-capacity for space-time fractional heat equations

To establish the adjoint formulation of C p(α,β)() , we need to find out the adjoint operator R α,β* of the operator Rα,β. Note that

+n+1Rα,β(f)(x,t)g(x,t)dxdt= +n+1(nGt(xy)f(y)dy)g(x,t)dxdt=nf(y)( +n+1Gt(xy)g(x,t)dxdt)dy

holds for all f, gC 0( +n+1) . So R α,β* is defined via

R α,β*(g)(x):= +n+1Gt(xy)g(x,t)dxdt,gC 0( +n+1).

For a Borel measure µ with compact support in +n+1 ,

R α,β*μ(x):= +n+1Gt(zx)dμ(z,t).

Proposition 4.1

Given p ∈ (1, ∞) and a compact subset K of +n+1 , let p′ = p/(p − 1) and 𝔐+(K) be the class of nonnegative Radon measures supported by K.

  1. C p(α,β)(K)=sup{μ 1p:μ𝔐+(K)&R α,β*μLp(n)1} .

  2. There exists a µK ∈ 𝔐+(K) such that

    μK(K)=n(R α,β*μK(x))pdx= +n+1Rα,β(R α,β*μK)pdx=C p(α,β)(K).

Proof

(i) We set

C p(α,β)˜(K)=sup{μ 1p:μ𝔐+(K)&R α,β*μLp(n)1}.

Since ‖µ1 = µ(K), for any f ≥ 0 & Rα,βf ≥ 1K,

μ1KRα,βf(x,t)dμ(x,t) +n+1Rα,βf(x,t)dμ(x,t)nf(x)R α,β*μ(x)dxfLp(n)R α,β*μLp(n).

Because R α,β*μLp(n)1 , then ‖µ1 ≤ ‖fLp(ℝn) and

μ 1pinf{f Lp(n)p:f0&Rα,βf1K}

which means that C p(α,β)˜(K)C p(α,β)(K) .

Define

{ 𝒳:={μ:μ𝔐+(K)&μ(K)=1};𝒴:={f:0<fLp(n)&fLp(n)1};𝒵:={f:0fLp(n)&Rα,βf1K};E(μ,f):=n(R α,β*μ)(x)f(x)dx= +n+1Rα,βf(x,t)dμ(x,t).

By [3, Theorem 2.4.1], supf𝒴 minµ𝒳 E(µ, f) = minµ𝒳 supf𝒴 E(µ, f). We can get

minμ𝔐+(K)R α,β*μLp(n)μ(K)=minμ𝔐+(K)supfLp(n)&fLp(n)=1nf(x)R α,β*μ(x)dxμ(K)minμ𝔐+(K)supf𝒴nf(x)R α,β*μ(x)dxfLp(n)μ(K)=supf𝒴minμ𝒳1fLp(n){ KRα,βf(x,t)dμ(x,t) }=supf𝒴1fLp(n)(min(x,t)KRα,βf(x,t))minμ𝒳μ(K)sup0<fLp(n)(min(x,t)KRα,βf(x,t))fLp(n)1inf0fLp&minRα,βf=1fLp=(C p(α,β)(K))1/p.

Then for R α,β*μLp(n)1 , it holds

(C p(α,β)(K))1/p=minμ𝔐+(K)1μ(K)R α,β*μLp(n).

Recall that

C p(α,β)˜(K)=sup{μ 1p:μ𝔐+(K)&R α,β*μLp(n)1}.

For any µ ∈ 𝔐+(K), take μ1:=R α,β*μ Lp(n)1μ , which means that R α,β*μ1Lp(n)=1 .

[C p(α,β)˜(K)]1/psup{μ𝔐+(K):μ1R α,β*μLp(n)}=sup{μ11,μ1𝔐+(K)},

which implies that

minμ𝔐+(K){ R α,β*μLp(n)μ(K) }=minμ𝔐+(K){ R α,β*μLp(n)μ1 }(C p(α,β)˜(K))1/p.

This gives (C p(α,β)(K))1/p(C p(α,β)˜(K))1/p . The proof of (i) is completed.

Next, we prove (ii). According to (i), we select a sequence {µj} ⊂ 𝔐+(K) such that

{ limj(μj(K))p=C p(α,β)(K);R α,β*μjLp(n)1.

A direct computation implies that

C p(α,β)(K)=sup{ μ 1p:μ𝔐+(K)&R α,β*μLp(n)=1 }.

Then, using the fact R α,β*μjLp(n)=1 , we get

| +n+1Rα,βf(x,t)dμj(x,t) |=| nf(x)R α,β*μj(x)dx |R α,β*μjLp(n)fLpfLp.

There exists µ ∈ 𝔐+(K) such that µj weak * convergence to µ. Hence μp(K)=C p(α,β)(K) . Since the Lebesgue space Lp(ℝn) is uniformly convex for 1 < p < ∞, noting that the set

{fC 0(n):f0onnandf1}

is a convex set. Following the procedure of [3, Theorem 2.3.10], we can prove that there exists a unique function denoted by fK such that

(4.1) { fKLp(n);C p(α,β)({(x,t)K:Rα,βfK<1})=0;fK Lp(n)p=C p(α,β)(K).

Then we have

(4.2) (C p(α,β)(K))1/p=μ(K) +n+1Rα,βf(x,t)dμ(x,t)nfK(x)R α,β*μ(x)dxfKLp(n)R α,β*μLp(n)=(C p(α,β)(K))1/pR α,β*μLp(n),

which implies that R α,β*μLp(n)1 . On the other hand, following the procedure of [3, Proposition 2.3.2, (b)], we can prove that μP α*μ(x) is lower semi-continuous on M+( +n+1) in the weak* topology, i.e.,

R α,β*μ(x)liminfjR α,β*μj(x),

which, together with R α,β*μjLp(n)1 , gives R α,β*μLp(n)1 . Hence R α,β*μLp(n)=1 . Taking μK=(C p(α,β)(K))1/pμ yields

μK(K)=K(C +n+1α,p(K))1/pdμ=(C p(α,β)(K))1/pμ(K)=(C p(α,β)(K))1/p(C p(α,β)(K))1/p=C p(α,β)(K).

On the other hand,

n(Rα,β*μK(x))pdx=Rα,β*μKLp(n)p=(Cp(α,β)(K))Rα,β*μLp(n)p=Cp(α,β)(K).

This indicates that

(4.3) μK(K)=n(Rα,β*μK(x))pdx=Cp(α,β)(K).

Let fK be the function mentioned above. Then

μK({(x,t)K:PαfK(x,t)1})=0.

By Hölder’s inequality, we can get

(4.4) Cp(α,β)(K)=μK(K)KRα,βfKdμKnfK(x)Rα,β*μK(x)dxfKLp(n)Rα,β*μKLp(n)=(Cp(α,β)(K))1/p(Cp(α,β)(K))1/p=Cp(α,β)(K).

It follows from (4.4) that

Cp(α,β)(K)=nfKRα,β*μKdx.

Hence

nfKRα,β*μKdx=n(Rα,β*μK)pdx=Cp(α,β)(K).

The above identity implies that

C+n+1α,p(K)=+n+1Rα,βfKdμK=+n+1Rα,β(Rα,β*μK)p1dμK,

which completes the proof of (ii).

Below we investigate some basic properties of Cp(α,β)() .

Proposition 4.2

  1. Cp(α,β)()=0 ;

  2. If K1K2+n+1 , then Cp(α,β)(K1)Cp(α,β)(K2) ;

  3. For any sequence {Kj}j=1 of subsets of +n+1 ,

    Cp(α,β)(j=1Kj)j=1Cp(α,β)(Kj);

  4. For any K+n+1 and any x0 ∈ ℝn, Cp(α,β)(K+(0,x0))=Cp(α,β)(K) .

Proof

  1. By the definition of Cp(α,β) , if K = ∅, then 1K ≡ 0. Take f = 0. Then 0Cp(α,β)(K)fLp(n)p=0 , i.e., Cp(α,β)(K)=0 .

  2. Let K1K2+n+1 . For any fixed (x,t)+n+1 , 1K1(x, t) ≤ 1K2(x, t) due to

    {1K1(x,t)=1K2(x,t),(x,t)K1;1K1(x,t)=0<1=1K2(x,t),(x,t)K1&(x,t)K2;1K1(x,t)=1K2(x,t)=0,(x,t)K2.

    This means that if f ≥ 0 such that Rα,βf ≥ 1K2, then Rα,βf ≥ 1K2, equivalently,

    {fLp(n)p:f0&Rα,β(f)1K2}{fLp(n)p:f0&Rα,β(f)1K1}.

    By the definition of Cp(α,β) , we can get Cp(α,β)(K1)Cp(α,β)(K2) .

  3. Let > 0. Take fj ≥ 0 such that Pαfj ≥ 1 on Kj and

    n|fj(x)|pdxCp(α,β)(Kj)+ɛ/2j.

    Let f=supj𝕅+fj . For any (x,t)j=1Kj , there exists a j0 such that (x, t) ∈ Kj0 and Pαfj0(x, t) ≥ 1. Hence Pαf(x, t) ≥ 1 on j=1Ej . On the other hand,

    fLp(n)p=n|f(x)|pdxj=1n|fj(x)|pdx=j=1Cp(α,β)(Kj)+ɛ,

    which indicates

    Cp(α,β)(j=1Kj)j=1Cp(α,β)(Kj).

  4. Define fx0(x) = f(xx0). Then ‖fLp(ℝn) = ‖fx0Lp(ℝn). If (x, t) ∈ K + (0, x0), then (t, xx0) ∈ K, and verse visa. Take f ≥ 0 and Rα,βf ≥ 1K. We have

    Rα,βfx0(x,t)=nGt(xy)fx0(y,t)dy=nGt(xy)f(yx0)dy=nGt(xx0(yx0))f(yx0)dy=Rα,βf(xx0),

    which means that Rα,βfx0(x, t) ≥ 1K+(0,x0) is equivalent to Rα,βf(xx0, t) ≥ 1K. We have Cp(α,β)(K+(0,x0))=Cp(α,β)(K) .

Proposition 4.3

For t0 > 0, x0 ∈ ℝn and r0 > 0, set the (α, β)-parabolic ball centered at (x0, t0) with the radius r0 as

Br0(α,β)(x0,t0)={(x,t)+n+1,r0α<tt0<2r0α,|xx0|<r0β/2}.

  1. If 1 ≤ p < ∞, then

    Cp(α,β)(Br0(α,β)(0,0))=r0βnCp(α,β)(B1(α,β)(0,0)),r0>0.

  2. For t0 ≥ 0, x0 ∈ ℝn and r0 > 0 with t0r0α ,

    r0nβCp(α,β)(Br0(α,β)(t0,x0))((t0+r0α)nβ/αr0βn)pr0βn.

    Specially, for t0r0α ,

    Cp(α,β)(Br0(α,β)(t0,x0))r0βn.

Proof

(i) If f ≥ 0 obeys Rα,βf1Br0(α,β)(0,0) , then for (x,t)Br0(α)(0,0) , we can see that (x,t)Br0(α)(0,0) is equivalent to (x/r0β,t/r0α)B1(α,β)(0,0) . Let t/r0α=s and x/r0β=y . If f ≥ 0 and Rα,βf(x, t) ≥ 1, (x,t)Br0(α,β)(0,0) , we can get

Rα,βf(x,t)=nGt(xz)f(z)dz=n(0Kα,(t/u)β(xz)gβ(u)du)f(z)dz=n(0Kα,(r0αs/u)β(xr0βv)gβ(u)du)f(r0βv)r0βndv.

By the Fourier transform, we can see that, letting r0βξ=η ,

Kα,(r0αs/u)β(xr0βv)=nexp(r0αβsβuβ|ξ|β)exp(i(xr0βv)ξ)dξ=nexp(i(r0βxv)η)exp(|η|α(s/u)β)r0βndη=r0βnKα,(s/u)β(r0βxv).

The above identities show that

Rα,βf(x,t)=n(0Kα,(s/u)β(r0βxv)gβ(u)du)r0βf(r0βv)r0βndv=nGs(r0βxv)fr0(v)dv=Rα,βfr0(r0βx,s)=Rα,βfr0(s,y),

which indicates that Rα,βf(x,t)1(x,t)Br0(α,β)(0,0) is equivalent to Rα,βf(y, s) ≥ 1, (y,s)B1(α,β)(0,0) . Finally, we obtain

Cp(α,β)(Br0(α,β)(0,0))=inf{fLp(n)p:f0&Rα,βf1Br0(α,β)(0,0)}=r0βninf{fr0Lp(n)p:fr00&Rα,βfr01B1(α,β)(0,0)}r0βninf{gLp(n)p:g0&Rα,βg1B1(α,β)(0,0)}=rβnCp(α,β)(B1(α,β)(0,0)).

Conversely, we can also get, changing the order of Cp(α,β)(Br0(α,β)(0,0)) and Cp(α,β)(B1(α,β)(0,0)) ,

r0βnCp(α,β)(Br0(α,β)(0,0))Cp(α,β)(B1(α,β)(0,0)),

which means (i) holds.

(ii) For p ∈ [1, ∞), choose p˜ , q˜ such that

{1p<p˜<npnmin{n,α}=;1/q˜=nβα(1/p1/p˜).

If 0 ≤ fLp(ℝn) and Rα,βf(x, t) ≥ 1 for (x,t)Br0(α,β)(x0,t0)+n+1 , then

{r0α<tt0<2r0α(|xx0|<r0β/2|Rα,βf(x,t)|p˜dx)q˜/p˜dt}1/q˜{r0α<tt0<2r0α(|xx0|<r0β/21dx)q˜/p˜dt}1/q˜r0βn/p˜+α/q˜.

On the other hand, by Lemma 2.3,

{r0α<tt0<2r0α(|xx0|<r0β/2|Rα,βf(x,t)|p˜dx)q˜/p˜dt}1/q˜Rα,βfLq˜((t0+r0α,t0+2r0α);Lp˜)fLp(n).

Since 1/q˜=βn(1/p1/p˜)/α , the above estimates indicate that r0βnfLp(n)p .

For the converse, choose f=1{xn:|xx0|<r0β/2} . Then

Rα,βf(x,t)=nGt(xy)f(y)dy={yn:|yx0|<r0β/2}Gt(xy)f(y)dy.

If (x,t)Br0(α,β)(x0,t0) , then |xx0|<r0β/2 . Since t0+r0α<t<t0+2r0α ,

tβ(tβ/α+|xy|)n+α1tβn/α1(t0+r0α)nβ/α,

which gives

Rα,β(f)(x,t){yn:|yx0|<r0β/2}tβ(tβ/α+|xy|)n+αdyr0nβ(t0+r0α)nβ/α,

equivalently, Rα,β((t0+r0α)nβ/αr0βnf)1 . Under the assumption t0r0α , we obtain

Cp(α,β)(Br0(α,β)(x0,t0))((t0+r0α)nβ/αr0βn)f(x)Lp(n)p=((t0+r0α)nβ/αr0βn)pr0βn.

Specially, for t0r0α , Cp(α,β)(Br0(α,β)(x0,t0))r0βn . This completes the proof of Proposition 4.3.

We investigate the capacitary strong and weak type inequalities. As some preliminaries, we prove several further properties of the capacity Cp(α,β)() . At first, the capacity Cp(α,β)() is an outer capacity, i.e.,

Proposition 4.4

For any E+n+1 ,

Cp(α,β)(E)=inf{Cp(α,β)(O):OE,Oopen}.

Proof

Without loss of generality, we assume that Cp(α,β)(E)< . By (ii) of Proposition 4.2,

Cp(α,β)(E)inf{Cp(α,β)(O):OE,Oopen}.

For ∈ (0, 1), there exists a measurable, nonnegative function f such that Rα,βf ≥ 1 on E and

n|f(x)|pdxCp(α,β)(E)+ɛ.

Since Rα,βf is lower semi-continuous, then the set Oɛ:={(x,t)+n+1:Rα,βf(x,t)>1ɛ} is an open set. On the other hand, EO. This implies that

Cp(α,β)(Oɛ)1(1ɛ)pn|f(x)|pdx<1(1ɛ)p(Cp(α,β)(E)+ɛ).

The arbitrariness of indicates that Cp(α,β)(E)inf{Cp(α,β)(O):OE,Oopen} .

An immediate corollary of Proposition 4.4 is the following result.

Corollary 4.5

If {Kj}j=1 is a decreasing sequence of compact sets, then

Cp(α,β)(j=1Kj)=limjCp(α,β)(Kj).

Proposition 4.6

Let 1 < p < ∞. If {Ej}j=1 is an increasing sequence of arbitrary subsets ofn, then Cp(α,β)(j=1Ej)=limjCp(α,β)(Ej) .

Proof

Since {Ej}j=1 is increasing, then Cp(α,β)(j=1Ej)limjCp(α,β)(Ej) .

Conversely, without loss generality, we assume that limjCp(α,β)(Ej) is finite. For each j, let fEj be the unique function such that fEj ≥ 1 on Ej and fEjLpp=Cp(α,β)(Ej) . Then for i < j, it holds that Rα,βfEj ≥ 1 on Ei and further, Rα,β((fEi + fEj)/2) ≥ 1 on Ei, which means that

n((fEi+fEj)/2)pdxCp(α,β)(Ei).

It follows from [3, Corollary 1.3.3] that the sequence {fEj}j=1 converges strongly to a function f satisfying

fLpp=limjCp(α,β)(Ej).

Similar to [3, Proposition 2.3.12], it can be deduced that Rα,βf ≥ 1 on j=1Ej , except possibly on a countable union of sets with Cp(α,β)() zero. Hence

limjCp(α,β)(Ej)n|f(x)|pdxCp(α,β)(j=1Ej).

As a corollary of Proposition 4.6, we can get

Corollary 4.7

Let O be an open subset of +n+1 . Then

Cp(α,β)(O)=sup{Cp(α,β)(K):compactKO}.

The strong type inequality corresponding to Cp(α,β)() is as follows.

Lemma 4.8

Let p ∈ (1, ∞). Then

0Cp(α,β)({(x,t)+n+1:Rα,βf(x,t)λ})dλpfLp(n)p,fL+p(n).

Here and henceforth, the symbol L+p(n) stands for the class of all nonnegative functions in Lp(ℝn) and dλp = p−1dλ.

Proof

Since C0(n)Lp(n) , we are about to verify this inequality for any nonnegative C0(n) -function. Assume that fC0(n) . For r > 0, let

Ej:={(x,t)Br(0,0)¯:Rα,βf(x,t)2j}.

Note that Ej depends on r. Since fC0(n) , Rα,βf(x, t) is continuous. Thus, Ej is the intersection of Br(0,0)¯ and a close set which is equivalent to a compact set in ℝn.

Let µj stand for the measure corresponding to Ej such that

μj(Ej)=n(Rα,β*μj(x))pdx=+n+1Rα,β(Rα,β*μj)p1dμj=Cp(α,β)(Ej).

Let S:=j=2jpμj(Ej) and T:=j=2j(p1)(Rα,β*μj)Lpp . Because fC0(n) , there exists a positive integer j0 such that Ej are empty sets for j > j0, i.e., μj(Ej)=Cp(α,β)(Ej)=0 , j > j0. Hence j=12jpμj(Ej)< . On the other hand,

j=12jpμj(Ej)=j=12jpj=12jpCp(α,β)(Ej)j=12jpj=12jpCp(α,β)(Br(0,0))rnj=12jpj=12jp,

which gives S < ∞. It follows from Hölder’s inequality that

(4.5) Sj=2j(p1)+n+1Rα,βfdμjnf(j=2j(p1)(Rα,β*μj))dxT1/pfLp.

Below we prove that

(4.6) TS,

The proof of (4.6) is divided into two cases.

Case 1: 2 ≤ p < ∞. For k = 0, ±1, ±2, . . . , let

{σk(x)=j=k2j(p1)Rα,β*μj(x);σ(x)=j=2j(p1)Rα,β*μj(x).

Since fC0(n) , the sets Ej are empty for sufficiently large j, i.e., there exists a positive integer j0 such that Cp(α,β)(Ej)=0 , j > j0. Then by (ii) of Proposition 4.1,

σkLp=j=k2j(p1)Rα,β*μjLpj=k2j(p1)Rα,β*μjLpj=kj02j(p1)(Cp(α,β)(Ej))1/p<,

which implies that for any k, σkLp′ (ℝn). For x ∈ ℝn, the sequence {σk(x)} is increasing as k → −∞ since Rα,β*μj(x)0 . If there exists an upper bound for {σk(x)}, we know that σk(x) converges to the series j=2j(p1)Rα,β*μj(x) . If the sequence {σk} is unbounded, then σk tends to ∞ as k → −∞. Without loss of generality, formally, we write limkσk(x)=σ(x) . Then by the mean value theorem, noticing that σk(x) ≥ σk+1(x), we have

(4.7) σ(x)p=(j=2j(p1)Rα,β*μj(x))p=pk=(σk(x))p1=limnσn(x)p=limnk=n(σk(x)pσk+1(x)p)p(σk(x))p1(σk(x)σk+1(x))=pk=(σk(x))p12k(p1)Rα,β*μk(x).

We use Cauchy-Schwartz’s inequality to obtain

T=pnk=σkp1(x)2k(p1)Rα,β*μk(x)dxpn(k=(σk(x))2k1(p1)1p1(Rα,β*μk)p1)p1×(k=2k(p1)p(p2)(p1)212p(Rα,β*μk(x))p)2pdx=pn(k=σk(x)2k(Rα,β*μk)p1)p1(k=2kp(Rα,β*μk(x))p)2pdx,

which, together with Hölder’s inequality, indicates that TpT12pT2p1 , where

{T1:=n(k=2kp(Rα,β*μk(x))p)dx;T2:=n(k=σk(x)2k(Rα,β*μk)p1)dx.

For T1, we have

T1=k=2kpn(Rα,β*μk(x))pdx=k=2kpCp(α,β)(Ek)k=2k12kCp(α,β)({(x,t)Br(0,0)¯:Rα,βf(x,t)2k})dλpk=2k12kCp(α,β)({(x,t)Br(0,0)¯:Rα,βf(x,t)λ})dλp0Cp(α,β)({(x,t)Br(0,0)¯:Rα,βf(x,t)λ})dλpS.

For T2, we can get

T2=k=2kn(jk2j(p1)Rα,β*μj(x))(Rα,β*μk)p1dx=k=jk2k+j(p1)nRα,β*μj(x)(Rα,β*μk)p1dx=k=jk2k+j(p1)+n+1Rα,β(Rα,β*μk)p1dμj(x).

Note that Ek is compact subsets. Let fEk be the function satisfying (4.1). Suppose that Rα,βfEk(x0, t0) > 1, by the lower-semicontinuity, Rα,βfEj ≥ 1 + δ > 1 on some neighborhood U of (x0, t0). On the other hand, denote by ΩEk the set {(x, t) ∈ Ek : Rα,βfEk < 1} and let F be any compact subset of ΩEk. For any 0 ≤ fLp(ℝn) such that Rα,βf ≥ 1 on F

μk(F)+n+1Rα,βfdμk=nfRα,β*μkdxRα,β*μkLpfLp,

which, together with (4.3), gives

μk(F)Rα,β*μkLpCp(α,β)(F)Rα,β*μkLpCp(α,β)(ΩEk)=0.

Hence, µk(ΩEk) = 0, i.e., Rα,βfEk ≥ 1 on Ek for µk a.e. We can deduce that

Cp(α,β)(Ek)=+n+1Rα,β(Rα,β*μk)p1dμk=+n+1Rα,βfEkdμk(1+δ)μk(U)+μk(Ek\U)δμk(U)+μk(Ek),

which gives µk(U) = 0, i.e., (x0, t0) ∉ supp µk. Equivalently, for all (x, t) ∈ supp µk,

Rα,β(Rα,β*μk)p1=Rα,βfEk1.

Since for jk, EjEk and we obtain

T2k=jk2k+j(p1)Cp(α,β)(Ej)=j=2j(p1)Cp(α,β)(Ej)k=j2kj=2jpCp(α,β)(Ej)S.

The estimates for T1 and T2 yields (4.6). It can be deduced from (4.5) & (4.6) that

j=2j(p1)(Rα,β*μj)LppfLpp,

i.e., σLp′(ℝn) and the series j=2j(p1)Rα,β*μj(x)< a.e. x ∈ ℝn.

Case 2: 1 < p < 2. For k = 0, ±1, ±2, . . . , let

{σk(x)=j=k2j(p1)Rα,β*μj(x);σ(x)=j=2j(p1)Rα,β*μj(x).

Similarly, because σk(x) ≥ 0 for x ∈ ℝn, we can also write limkσ(x)=σ(x) formally. Below, similar to Case 1, we will prove (4.6) and σLp′(ℝn). Following the procedure of (4.7), we can deduce that

(σ(x))p=(j=2j(p1)Rα,β*μj(x))ppk=(σk(x))p12k(p1)Rα,β*μk(x).

We get

T=pk=2k(p1)nPα*μk(x)(j=k2j(p1)Rα,β*μj(x))p1dx=pk=2k(p1)n(j=k2j(p1)(Rα,β*μk(x))1/(p1)Rα,β*μj(x))p1dx=pk=2k(p1)j=k2j(p1)(Rα,β*μk(x))1/(p1)Rα,β*μj(x)Lp1p1pk=2k(p1){j=k2j(p1)(Rα,β*μk(x))1/(p1)Rα,β*μj(x)Lp1}p1.

Also, for jk, if xEk then xEj. Similarly, we can deduce that Rα,β(Rα,β*μj(x))p1(x)1 , xEk. This indicates that

n(Rα,β*μk(x))(Rα,β*μj(x))p1dx=+n+1Rα,β(Rα,β*μj(x))p1dμkμk(Ek)=Cp(α,β)(Ek).

We obtain

Tk=2k(p1){j=k2j(p1)(nRα,β*μk(x)(Rα,β*μj(x))p1dx)1/(p1)}p1k=2k(p1)Cp(α,β)(Ek)(j=k2j(p1))p1k=2kpCp(α,β)(Ek)S.

which gives (4.6) for 1 < p < 2.

It follows from (4.5) & (4.6) that S ≲ ‖fLp T1/p′ ≲ ‖fLpS1/p′. Then we can get SfLpp and consequently, T < ∞. Then σLp′(ℝn) for 1 < p < 2. By the fact that fC0(n) , there exists an integer j0 such that

j=02j(p1)Rα,β*μjLpj=02j(p1)Rα,β*μjLpj=0j02j(p1)(Cp(α,β)(Ej))1/p<.

This indicates that j=12j(p1)Rα,β*μjLp(n) . For σk, if k ≤ −1, because Rα,β*μj(x)0 , then

σkLpj=12j(p1)Rα,β*μjLp

and σkLp′(ℝn). If k ≥ 0, we can also use the identity

σk=j=12j(p1)Rα,β*μj+j=0j02j(p1)Rα,β*μj,

to get σkLp(ℝn). Further, we obtain that

0Cp(α,β)({(x,t)Br(0,0)¯:Rα,βf(x,t)λ})dλp=j=2j2j+1Cp(α,β)({(x,t)Br(0,0)¯:Rα,βf(x,t)λ})dλpj=Cp(α,β)(Ej)2j2j+1dλpj=2pjμj(Ej)fLpp.

Hence we can deduce from Proposition 4.6 and Fauto’s lemma that

0Cp(α,β)({(x,t)+n+1:Rα,βf(x,t)>λ})dλp=0Cp(α,β)(r=1{(x,t)Br(0,0):Rα,βf(x,t)>λ})dλp=0limrCp(α,β)({(x,t)Br(0,0):Rα,βf(x,t)>λ})dλplim_r0Cp(α,β)({(x,t)Br(0,0)¯:Rα,βf(x,t)λ})dλpfLpp.

By the above capacitary strong type inequality, it is easy to get the following capacitary weak type inequality

λpCp(α,β)({(x,t)+n+1:Rα,βf(x)λ})fLp(n)p,fL+p(n).

5 Lq(+n+1,μ) -extension of Lp(n)

Let 1 < pq < ∞ and μ𝒨+(+n+1) . For λ > 0, define

κ(μ;λ):=inf{Cp(α,β)(K):compactK+n+1,μ(K)λ}.

Theorem 5.1

Let 1 < pq < ∞ and μ𝒨+(+n+1) .

  1. The extension Rα,β:Lp(n)Lq(+n+1) is bounded if and only if

    supλ(0,)λp/qκ(μ;λ)<;

  2. If 1 < p < q < ∞, then λp/qκ(µ; λ) ∀λ ∈ (0, ∞) can be replaced by μ(Br(α,β)(x0,t0))rβqn/p(r,t0,x0)+×+×n with t0rα.

Proof

(i). Suppose that Rα,β is bounded from Lp(ℝn) to Lq(+n+1,μ) . For a compact set K+n+1 , denote by µ |K the restriction of µ to the set K. Then

nf(x)Rα,β*μ|Kdx=+n+1Rα,βf(x,t)dμ|K(x,t){+n+1(Rα,βf(x,t))qdμ|K(x,t)}1/q{+n+1dμ|K(x,t)}11/q=Rα,βfLq(+n+1,μ)(μ(K))11/qfLp(n)(μ(K))11/q,

which implies that Rα,β*μ|KLp(n)(μ(K))1/q . Letting

Eλ(f):={(x,t)+n+1:|Rα,βf(x,t)|>λ},

we have

λμ(Eλ(f))=λEλ(f)1dμ(x,t)Eλ(f)|Rα,βf(x,t)|dμ=+n+1|Rα,βf(x,t)|dμ|Eλ(f)Rα,βfLq(+n+1,μ)(μ(Eλ))1/qfLp(n)(μ(Eλ))1/q,

which implies that λ(µ(Eλ(f)))1/q ≲ ‖fLp(ℝn) and, hence, supλ(0,)λqμ(Eλ(f))fLp(n)q . Choose a function fLp(ℝn) such that Rα,βf ≥ 1 on a given compact set K+n+1 , that is, KE1(f). It follows from the above estimate that

(μ(K))1/q(μ(E1(f)))1/qfLp(n)

and

(μ(K))p/qinf{fLp(n)p:f0&Rα,βf1}Cp(α,β)(K).

If K is compact and µ(K) ≥ λ, then

λ1/q(μ(K))1/q(Cp(α,β)(K))1/p.

This means that λp/qCp(α,β)(K) , equivalently,

λp/qinf{Cp(α,β)(K):Kiscompactandμ(K)λ},

that is, λp/qκ(µ, λ).

Conversely, we assume that supλ(0,∞) λp/q/κ(µ, λ) < ∞. We know that for any compact set K, (μ(K))1/q(Cp(α,β)(K))1/p . We have proved that

(5.1) 0Cp(α,β)({(x,t)+n+1:Rα,βf(x,t)λ})dλpfLp(n)p.

For any τ > 0, we can get

(5.2) τpCp(α,β)(Eτ)=τpCp(α,β)({(x,t)+n+1:Rα,βf(x,t)τ})=0τCp(α,β)({(x,t)+n+1:Rα,βf(x,t)τ})dλp0τCp(α,β)({(x,t)+n+1:Rα,βf(x,t)λ})dλp0Cp(α,β)({(x,t)+n+1:Rα,βf(x,t)λ})dλpfLp(n)p.

We can use (5.1) & (5.2) to obtain

+n+1|Rα,βf(x,t)|qdμ(x,t)=μ(Eλ)0dλq0(Cp(α,β)(Eλ))q/pdλq=q0(Cp(α,β)(Eλ))q/p1(Cp(α,β)(Eλ))λq1dλ0(λpfLp(n)p)q/p1(Cp(α,β)(Eλ))λq1dλfLp(n)qp0Cp(α,β)(Eλ)dλpfLp(n)q,

which completes the proof of (i).

(ii). If λp/qκ(µ, λ), then for any set K+n+1 , (μ(K))1/q(Cp(α,β)(K))1/p . Let K=Br(α,β)(t0,x0) . Then

(μ(Br(α,β)(x0,t0)))1/q(Cp(α,β)(Br(α,β)(x0,t0)))1/p.

By Proposition 4.3,

rnβCp(α,β)(Br(α,β)(x0,t0))((t0+rα)nβ/αr0βn)prβn.

Then for t0rα, Cp(α,β)(Br(α,β)(x0,t0))rnβ and (μ(Br(α,β)(x0,t0)))1/qrnβ/p .

For the reverse implication, if (x,t)Br(α,β)(x0,t0) , then |xx0| ≤ rβ/2 and rα < tt0 < 2rα. We get t > t0 + rα > rα and |xx0| < rβ/2 ≲ tβ/α, and hence,

Gt(xy)tβ(tβ/α+|xx0|)n+α=1tnβ/α1(1+|xx0|/tβ/α)n+α1tnβ/α1rnβ.

This means that if (x,t)Br(α,β)(x0,t0) then r ≥ (Gt(xx0))−1/. We obtain

Rα,β*μ|K(x0)=+n+1Gt(x0x)dμ|K=+n+1((Gt(x0x))1/nβdrrnβ+1)dμ|K=+n+1(01Br(α,β)(x0,t0)drrnβ+1)dμ|K0μ|K(Br(α,β)(x0,t0))drrnβ+1.

Minkowski’s inequality gives

Rα,β*μ|KLp(n)0μ|K(Br(α,β)(,t0))Lp(n)drrnβ+1.

On the other hand,

μ|K(Br(α,β)(,t0))Lp(n)p=n(μ|K(Br(α,β)(x,t0)))pdx(μ(K))p1nμ|K(Br(α,β)(x,t0))dx(μ(K))prβn.

Hence,

δμ|K(Br(α,β)(x0,t0))Lp(n)drrnβ+1δμ(K)rnβ/pnβ1drμ(K)δnβ/p.

Meanwhile, using μ(Br(α,β)(x0,t0))rnβq/p , we have

μ|K(Br(α,β)(x0,t0))Lp(n)p=n(μ|K(Br(α,β)(x0,t0)))pdx0rnβq(p1)/pnμ|K(Br(α,β)(x0,t0))dx0rnβq(p1)/pμ(K)rnβrnβ(1+q/p(p1))μ(K),

which gives

0δμ|K(Br(α,β)(x0,t0))Lp(n)drrnβ+1(μ(K))1/p0δrnβ(1+q/p(p1))/pdrrnβ+1(μ(K))1/p0δrnβ/p+nβq/p2nβ1dr(μ(K))1/pδnβ(qp)/p2.

Finally,

Rα,β*μ|KLp(n)μ(K)δnβ/p+(μ(K))1/pδnβ(qp)/p2.

Take δ such that (µ(K))δnβ/p = (µ(K))1/pδ(qp)/p2, that is, δ = (µ(K))p/nβq. For such a δ,

Rα,β*μ|KLp(n)μ(K)((μ(K))p/nβq)nβ/p(μ(K))1/q.

Let fC0(n) and Eλ = {x : |Rα,β * f(x, t)| ≥ λ}. Then the set Eλ is compact. It follows from the above estimate that

(5.3) λμ(Eλ)n|Rα,βf(x,t)|dμ|EλfLpRα,β*μ|EλLpfLp(μ(Eλ))1/q.

For an arbitrary fLp(ℝn), via approximating f by a sequence from C0(n) in the Lp-norm, we can prove that (5.3) holds for f. For fLp(ℝn) such that Rα,βf ≥ 1 on K. By (5.3), it holds (µ(K))1/q ≲ ‖fLp, which gives (μ(K))1/q(Cp(α,β)(K))1/p . Recall that µ(K) ≥ λ. Then taking the infimum over the compact sets K such that µ(K) ≥ λ, we get λp/qCp(α,β)(K) , i.e.,

λp/qinf{Cp(α,β)(K):compactK+n+1,μ(K)λ}=cα,p(μ;λ).

This completes the proof of Theorem 5.1.

Theorem 5.2

Let 1 < q < p < ∞ and μ𝒨+(+n+1) . The extension

Rα,β:Lp(n)Lq(+n+1,μ)

is bounded if and only if

0(λp/qκ(μ;λ))q/(pq)dλλ<.

Proof

We first assume that Rα,β:Lp(n)Lq(+n+1,μ) is bounded. Then

(+n+1|Rα,βf(x,t)|qdμ)1/qfLp(n).

We can get

supλ>0λ(μ(Eλ(f)))1/q=supλ>0{λqμ(Eλ(f))}1/qsupλ>0{λqEλ(f)1dμ(x,t)}1/qsupλ>0{Eλ(f)|Rα,βf(x,t)|qdμ(x,t)}1/q{+n+1|Rα,βf(x,t)|qdμ(x,t)}1/qfLp(n).

By the definition of κ(µ, 2j), for any j ∈ 𝕑, there exists Kj such that µ(Kj) > 2j and Cp(α,β)(Kj)2κ(μ,2j) . On the other hand, since

Cp(α,β)(Kj)=inf{fLp(n)p:f0,Rα,βf1Kj}.

There exists a function fjLp(ℝn) such that Rα,βfj ≥ 1Kj and fjLp(n)p2Cp(α,β)(Kj) .

For the integers i, k with i < k, let

fi,k:=supijk(2jκ(μ;2j))1/(pq)fj.

Then

fi,kLp(n)pj=ik(2jκ(μ;2j))p/(pq)fjLp(n)pj=ik(2jκ(μ;2j))p/(pq)Cp(α,β)(Kj)j=ik(2jκ(μ;2j))p/(pq)κ(μ;2j).

Note that for ijk, if (x, t) ∈ Kj, then

|Rα,βfi,k(x,t)|=|Rα,β(supijk(2jκ(μ;2j))1/(pq)fj(x,t))||(2jκ(μ;2j))1/(pq)Rα,βfj(x,t)|(2jκ(μ;2j))1/(pq).

We can see from the above estimate that

Kj{(x,t)+n+1:Rα,βfi,k(x,t)>(2jκ(μ;2j))1/(pq)}.

This means that

2j<μ(Kj)<μ(E(2j/κ(μ;2j))1/(pq)(fi,k)).

We can obtain

fi,kLp(n)p+n+1|Rα,β(fi,k)(x,t)|qdμ(x,t)0(inf{λ:μ(Eλ(fi,k))s})qdsj=ik2j(inf{λ:μ(Eλ(fi,k))2j})qj=ik2j(2jκ(μ;2j))q/(pq)(j=ik(2j/κ(μ;2j))q/(pq)2j(j=ik(2j/κ(μ;2j))p/(pq)κ(μ;2j))q/p)fi,kLp(n)q(j=ik2jp/(pq)(κ(μ;2j))q/(pq))1q/pfi,kLp(n)q.

This implies

0(λp/q/κ(μ;λ))q/(pq)λ1dλj=2jp/(pq)(κ(μ;2j))q/(pq)1.

Conversely, let

Ip,q(μ)=0(λp/qκ(μ;λ))q/(pq)dλλ<.

Now for each integer j = 0, ±1, ±2, ..., and fC0(n) , let

Sp,q(μ;f)=j={μ(E2j(f))μ(E2j+1(f))}p/(pq)(Cp(α,β)(E2j(f)))q/(pq).

Using integration-by-part, Hölder’s inequality and Lemma 4.8, we obtain

+n+1|Rα,βf|qdμ=0λqdμ(Eλ(f))j={μ(E2j(f))μ(E2j+1(f))}2jq(Sp,q(μ;f))1q/p(j=2jpCp(α,β)(E2j(f)))q/p(Sp,q(μ;f))1q/p(0Cp(α,β)({(x,t)+n+1:|Rα,βf(x,t)|>λ})dλp)q/p(Sp,q(μ;f))1q/pfLp(n)q.

Note also that

(Sp,q(μ;f))1q/p=(j={μ(E2j(f))μ(E2j+1(f))}p/(pq)(Cp(α,β)(E2j(f)))q/(pq))1q/p=(j={μ(E2j(f))μ(E2j+1(f))}p/(pq)(κ(μ;μ(E2j(f))))q/(pq))1q/p=(j=(ν(E2j(f)))p/(pq)(μ(E2j+1(f)))p/(pq)(κ(μ;μ(E2j(f))))q/(pq))1q/p(0dsp/(pq)(κ(μ;s))q/(pq))1q/p(Ip,q(μ))1q/p.

Therefore,

(+n+1|Rα,βf(x,t)|qdμ)1/q(Ip,q(μ))(pq)/pqfLp(n).

Acknowledgements

This work was in part supported by National Natural Science Foundation of China (Nos. 11871293, 12071272) and Shandong Natural Science Foundation of China (No. ZR2020MA004).

  1. Conflict of interest statement:

    Authors state no con˛ict of interest.

  2. Data availability statements:

    Deposition of research data in controlled access repositories.

References

[1] D. Adams, On the existence of capacitary strong type estimates in ℝn, Ark. Math. 14 (1976), 125–140.Search in Google Scholar

[2] D. Adams, Lectures on Lp potential Theory, Univ. of Umea, 1981.Search in Google Scholar

[3] D. Adams and L. Hedberg, Function Spaces and Potential Theory, Berlin: Springer, 1996.Search in Google Scholar

[4] D. Adams and J. Xiao, Strong type estimates for homogeneous Besov capacities, Math. Ann. 325 (2003), 695–709.Search in Google Scholar

[5] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. Math. 76 (1962), 547–559.Search in Google Scholar

[6] C. Cascante, J. Ortega and I. Verbitsky, Trace inequalities of Sobolev type in the upper triangle case, Proc. London Math. Soc. 80 (2000), 391–414.Search in Google Scholar

[7] J. Cerdá, J. Martín and P. Silvestre, Conductor Sobolev-type estimates and isocapacitary inequalities, Indiana Univ. Math. J. 61 (2012), 1925–1947.Search in Google Scholar

[8] D. Chang and J. Xiao, Lq-extensions of Lp-spaces by fractional diffusion equations, Discrete Contin. Dyn. Syst. 35 (2015), 1905–1920.Search in Google Scholar

[9] G. Dafni and J. Xiao, Some new tent spaces and duality theorems for fractional Carleson measures and Q(ℝn), J. Funct. Anal. 208 (2004), 377–422.Search in Google Scholar

[10] A. Mathai and H. Haubold, Special functions for applied scientists, Springer, 2007.Search in Google Scholar

[11] M. Foondun and E. Nane, Asymptotic properties of some space-time fractional stochastic equations, Math. Z. 287 (2017), 493–519.Search in Google Scholar

[12] L. Grafakos, Classical and Morden Fourier Analysis, Praeson Education, Inc., 2004.Search in Google Scholar

[13] P. Li, S. Shi, R. Hu and Z. Zhai, Embeddings of Function Spaces via the Caffarelli-Silvestre Extension, Capacities and Wolff potentials, Nonlinear Analysis 217 (2022): 112758.Search in Google Scholar

[14] V. Maz’ya, The negative spectrum of the n-dimensional Schrödinger operator, Dokl. Akad. Nauk SSSR 144 (1962) 721–722 (in Russian). English translation: Soviet Math. Dokl. 3(1962) 808–810.Search in Google Scholar

[15] V. Maz’ya, Sobolev Spaces, Springer, Berlin, New York, 1985.Search in Google Scholar

[16] V. Maz’ya, Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces, in: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Paris, 2002, in: Contemp. Math., vol. 338, Amer. Math. Soc, Provi- dence, RI, 2003, pp. 307–340.Search in Google Scholar

[17] V. Maz’ya and I. Verbitsky, Capacitary estimates for fractional integrals, with applications to partial differential equations and Sobolev multipliers, Ark. Math. 33 (1995), 81–115.Search in Google Scholar

[18] S. Shi and J. Xiao, A tracing of the fractional temprerature field, Sci. China Math. 60 (2017), 2303–2320.Search in Google Scholar

[19] E.M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993.Search in Google Scholar

[20] I. Verbitsky, Nonlinear potentials and trace inequalities, in: J. Rossmann, P. Takac, G. Wildenhain (Eds.), The Maz’ya Anniversary Collection, Oper. Theory Adv. Appl. 110 (1999), 323–343.Search in Google Scholar

[21] J. Xiao, Carleson embeddings for Sobolev spaces via heat equation, J. Differ. Equ. 224 (2006), 277–295.Search in Google Scholar

[22] J. Xiao, Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation, Adv. Math. 207 (2006), 828–846.Search in Google Scholar

[23] J. Xiao, The sharp Sobolev and isoperimetric inequalities split twice, Adv. Math. 211 (2007) 417–435.Search in Google Scholar

[24] J. Xiao, Optimal geometric estimates for fractional Sobolev capacities, C. R. Acad. Sci. Ser. I. 354 (2016), 149–153.Search in Google Scholar

[25] Z. Zhai, Carleson measure problems for parabolic Bergman spaces and homogeneous Sobolev spaces, Nonlinear Anal. 73 (2010), 2611–2630.Search in Google Scholar

Received: 2021-04-03
Accepted: 2022-01-02
Published Online: 2022-02-14

© 2022 Pengtao Li et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/anona-2021-0232/html
Scroll to top button