Skip to main content
Log in

Assimilation of Observations from Meteorological Satellites in the Hydrometcenter of Russia

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Results of studies on analysis, correction, and assimilation of microwave and infrared satellite observations in the global data assimilation system of the Hydrometcenter of Russia are presented. Technique and results of adaptive correction (external calibration) of atmospheric sounding and imaging channels of the microwave radiometer MTVZA-GYa on board the Russian polar orbiting satellites of Meteor-M series are described. Assimilation of observations from the hyperspectral infrared Fourier spectrometer IFKS-2, which is also a part of the Meteor-M satellites payload, is presented. The assimilation technique includes a new scheme for selection of the most informative channels through orthogonalization of the so called Jacobians. Numerical experiments show that short-range forecasts almost equally benefit from assimilation of IKFS-2 and IASI data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. R. Gayfulin, M. D. Tsyrulnikov, A. B. Uspensky, E. K. Kramchaninova, S. A. Uspensky, P. I. Svirenko, and M. E. Gorbunov, “The Usage of MTVZA-GYa Satellite Microwave Radiometer Observations in the Data Assimilation System of the Hydrometcenter of Russia,” Meteorol. Gidrol., No. 9 (2017) [Russ. Meteorol. Hydrol., No. 9, 42 (2017)].

    Article  Google Scholar 

  2. A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, A. B. Uspensky, F. S. Zavelevich, Yu. M. Golovin, D. A. Kozlov, A. N. Rublev, and A. V. Kukharsky, “IKFS-2 Satellite Atmospheric Sounder. 1. Analysis of Outgoing Radiation Spectra Measurements,” Issledovanie Zemli iz Kosmosa, No. 4 (2016) [in Russian].

  3. M. A. Tolstykh, R. Yu. Fadeev, A. V. Shlyaeva, V. V. Shashkin, V. G. Mizyak, V. S. Rogutov, N. N. Bogoslovskii, G. S. Goiman, S. V. Makhnorylova, and A. Yu. Yurova, Atmosphere Modelling System for Seamless Prediction (Triada-LTD, Moscow, 2017) [in Russian].

    Google Scholar 

  4. A. B. Uspensky, V. V. Asmus, A. A. Kozlov, E. K. Kramchaninova, A. M. Strel’tsov, G. M. Chernyavsky, and I. V. Chernyi, “Absolute Calibration of MTVZA-GYa Satellite Microwave Radiometer Atmospheric Sounding Channels,” Issledovanie Zemli iz Kosmosa, No. 5 (2016) [in Russian].

  5. M. D. Tsyrulnikov, P. I. Svirenko, D. R. Gayfulin, M. E. Gorbunov, and A. N. Bagrov, “A New Technology of Cyclic Data Assimilation Based on the 3D-VAR Analysis Scheme,” in Results of Testing New and Improved Technologies, Models, and Methods of Hydrometeorological Forecasting, No. 43 (2016) [in Russian].

  6. M. D. Tsyrulnikov, P. I. Svirenko, D. R. Gayfulin, M. E. Gorbunov, and A. B. Uspensky, “Development of the Operational Data Assimilation System of the Hydrometcenter of Russia,” Gidrometeorologicheskie Issledovaniya i Prognozy, No. 4 (2019) [in Russian].

  7. M. Asch, M. Bocquet, and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications (Society for Industrial and Applied Mathematics, 2016).

    Book  Google Scholar 

  8. A. D. Collard, “Selection of IASI Channels for Use in Numerical Weather Prediction,” Quart. J. Roy. Meteorol. Soc., No. 629, 133 (2007).

    Article  Google Scholar 

  9. R. R. Ferraro, N. C. Grody, and G. F. Marks, “Effects of Surface Conditions on Rain Identification Using the DMSP-SSM/I,” Remote Sens. Rev., No. 1–4, 11 (1994).

    Article  Google Scholar 

  10. D. Gayfulin, M. Tsyrulnikov, and A. Uspensky, “Assessment and Adaptive Correction of Observations in Atmospheric Sounding Channels of the Satellite Microwave Radiometer MTVZA-GY,” Pure and Appl. Geophys., 175 (2018).

    Article  Google Scholar 

  11. A. J. Geer, K. Lonitz, P. Weston, M. Kazumori, K. Okamoto, Y. Zhu, E. Liu, A. Collard, W. Bell, S. Migliorini, P. Chambon, N. Fourrie, M.-J. Kim, C. Kopken-Watts, and C. Schraff, “All-sky Satellite Data Assimilation at Operational Weather Forecasting Centres,” Quart. J. Roy. Meteorol. Soc., No. 713, 144 (2018).

    Article  Google Scholar 

  12. M. E. Gorbunov, G. Kirchengast, and K. B. Lauritsen, “Generalized Canonical Transform Method,” Atmos. Measur. Techn., No. 2, 14 (2021).

    Article  Google Scholar 

  13. B. A. Harris and G. Kelly, “A Satellite Radiance-bias Correction Scheme for Data Assimilation,” Quart. J. Roy. Meteorol. Soc., 127 (2002).

    Article  Google Scholar 

  14. C. Kidd, “On Rainfall Retrieval Using Polarization-corrected Temperatures,” Int. J. Remote Sens., No. 5, 19 (1998).

    Article  Google Scholar 

  15. M. A. Lazzara, R. Dworak, D. A. Santek, B. T. Hoover, C. Velden, and J. Keyet, “High-latitude Atmospheric Motion Vectors from Composite Satellite Data,” J. Appl. Meteorol. Climatol., No. 2, 53 (2014).

    Article  Google Scholar 

  16. Q. Liu, F. Weng, and S. J. English, “An Improved Fast Microwave Water Emissivity Model,” IEEE Trans. Geosci. Remote Sens., No. 4, 49 (2010).

    Article  Google Scholar 

  17. A. McNally, “The Impact of Satellite Data on NWP,” in Proc. ECMWF Seminar on Use of Satellite Observations in NWP (2014).

  18. A. P. McNally and P. D. Watts, “A Cloud Detection Algorithm for High-spectral-resolution Infrared Sounders,” Quart. J. Roy. Meteorol. Soc., No. 595, 129 (2003).

    Article  Google Scholar 

  19. G. W. Petty and K. B. Katsaros, “Precipitation Observed over the South China Sea by the Nimbus-7 Scanning Multichannel Microwave Radiometer during Winter MONEX,” J. Appl. Meteorol. Climatol., No. 4, 29 (1990).

    Article  Google Scholar 

  20. R. Saunders, J. Hocking, E. Turner, P. Rayer, D. Rundle, P. Brunel, J. Vidot, P. Roquet, M. Matricardi, A. Geer, N. Bormann, and C. Lupu, “An Update on the RTTOV Fast Radiative Transfer Model (Currently at Version 12),” Geosci. Model Develop., No. 7, 11 (2018).

    Article  Google Scholar 

  21. Y. M. Timofeyev, A. B. Uspensky, F. S. Zavelevich, A. Polyakov, Y. Virolainen, A. Rublev, A. Kukharsky, J. V. Kiseleva, D. Kozlov, I. A. Kozlov, A. Nikulin, V. Pyatkin, and E. Rusin, “Hyperspectral Infrared Atmospheric Sounder IKFS-2 on “Meteor-M” No. 2—Four Years in Orbit,” J. Quant. Spectrosc. Radiat. Transf., 238 (2019).

    Article  Google Scholar 

  22. L. Ventress and A. Dudhia, “Improving the Selection of IASI Channels for Use in Numerical Weather Prediction,” Quart. J. Roy. Meteorol. Soc., No. 684, 140 (2014).

    Article  Google Scholar 

  23. A. Verhoef, M. Portabella, and A. Stoffelen, “High-resolution ASCAT Scatterometer Winds near the Coast,” IEEE Trans. Geosci. Remote Sens., No. 7, 50 (2012).

    Article  Google Scholar 

  24. B. Witschas, C. Lemmerz, A. Geiss, O. Lux, U. Marksteiner, S. Rahm, O. Reitebuch, and F. Weiler, “First Validation of Aeolus Wind Observations by Airborne Doppler Wind Lidar Measurements,” Atmos. Measur. Techn., No. 5, 13 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Tsyrulnikov.

Additional information

Translated from Meteorologiya i Gidrologiya, 2021, No. 12, pp. 80-93. https://doi.org/10.52002/0130-2906-2021-12-80-93.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyrulnikov, M.D., Gayfulin, D.R., Svirenko, P.I. et al. Assimilation of Observations from Meteorological Satellites in the Hydrometcenter of Russia. Russ. Meteorol. Hydrol. 46, 856–865 (2021). https://doi.org/10.3103/S1068373921120074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921120074

Keywords

Navigation