Skip to main content
Log in

The Antitumor Activity of hAMSCs Secretome in HT-29 Colon Cancer Cells Through Downregulation of EGFR/c-Src/IRTKS Expression and p38/ERK1/2 Phosphorylation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Colon cancer is considered as one of the main causes of mortality worldwide. Identifying a novel and more effective platform with fewer side effects is still progress. In various cancer types, Epidermal growth factor receptor (EGFR) and c-Src (a key mediator in EGFR signaling pathway) are the key targets for cancer therapy. Moreover, insulin receptor tyrosine kinase substrate (IRTKS or BAI1-associated protein 2-like 1: BAIAP2L1) is a member of the subfamily of inverse BAR (I-BAR) domain proteins, which mediates cell morphology and movement through regulation of actin polymerization. In this study, we employed a co-culture system using Transwell six-well plates. After 72 h, hAMSCs-treated HT-29 cells, EGFR, c-Src, IRTKS, p38, and ERK1/2 expression were analyzed using quantitative real time PCR (qRT-PCR) and western blot methods. The significant reduction in tumor cell growth and motility through downregulation of EGFR/c-Src/IRTKS expression and p38/ERK1/2 phosphorylation in HT-29 cells was demonstrated based on 2D and 3D cell culture models. The induction of cellular apoptosis was also found. Our results support the idea that the hAMSCS secretome has therapeutic effects on cancer cells. However, further experiments will be required to identify the exact molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The findings of this study are available upon reasonable request from the corresponding author.

References

  1. Safari, F., & Suetsugu, S. (2012). The bar domain superfamily proteins from subcellular structures to human diseases. Membrane, 2, 91–1170.

    Article  CAS  Google Scholar 

  2. Chen, G., Li, T., Zhang, L., Yi, M., Chen, F., Wang, Z., & Zhang, X. (2011). Src-stimulated IRTKS phosphorylation enhances cell migration. FEBS Letters, 585, 2972–2978.

    Article  CAS  PubMed  Google Scholar 

  3. Yeh, T. C., Ogawa, W., Danielsen, A. G., & Roth, R. A. (1996). Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyro-sine kinase. Journal of Biology and Chemistry, 271, 2921–2928.

    Article  CAS  Google Scholar 

  4. Scita, G., Confalonieri, S., Lappalainen, P., & Suetsugu, S. (2008). IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends in Cell Biology, 18, 52–60.

    Article  CAS  PubMed  Google Scholar 

  5. Hu, R. M., Han, Z. G., Song, H. D., Peng, Y. D., Huang, Q. H., Ren, S. X., Gu, Y. J., Huang, C. H., Li, Y. B., Jiang, C. L., Fu, G., Zhang, Q. H., Gu, B. W., Dai, M., Mao, Y. F., Gao, G. F., Rong, R., Ye, M., Zhou, J., Xu, S. H., Gu, J., Shi, J. X., Jin, W. R., Zhang, C. K., Wu, T. M., Huang, G. Y., Chen, Z., Chen, M. D. & & Chen, J. L. (2000). Gene expression profiling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning. Proceedings of the National Academy of Science of the United States of America, 97, 9543–9548.

    Article  CAS  Google Scholar 

  6. Wang, Y. P., Huang, L. Y., Sun, W. M., Zhang, Z. Z., Fang, J. Z., Wei, B. F., Wu, B. H. & Han, Z. G. (2013). Insulin receptor tyrosine kinase substrate activates EGFR/ERK signalling pathway and promotes cell proliferation of hepatocellular carcinoma. Cancer Letters, 337, 96–106.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, K. S., Chen, G., Shen, H. L., Li, T. T., Chen, F., Wang, Q. W., Wang, Z. Q., Han, Z. G., & Zhang, X. (2011). Insulin receptor tyrosine kinase substrate enhances low levels of MDM2-mediated p53 ubiquitination. PLoS One, 6, e23571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, S., Liu, Z., Ma, Y. M., Guan, X., Jiang, Z., Sun, P., Liu, E. R., Zhang, Y. K., Wang, H. Y., & Wang, X. S. (2020). Upregulated insulin receptor tyrosine kinase substrate promotes the proliferation of colorectal cancer cells via the bFGF/AKT signaling pathway. Gastroenterology Reports, 9(2), 166–175.

    Article  Google Scholar 

  9. Thomas, S. M. & Brugge, J. S. (1997). Cellular functions regulated by Src family kinases. Annual Review of Cell and Developmental Biology, 13, 513–609.

    Article  CAS  PubMed  Google Scholar 

  10. Maa, M. C., Leu, T. H., McCarley, D. J., Schatzman, R. C. & Parson, S. J. (1995). Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proceedings of the National Academy of Science of the United States of America, 92, 6981–6985.

    Article  CAS  Google Scholar 

  11. Bray, F., Ferlay, J., Soerjomataram, I., Siegal, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  12. Tjandra, J. J., & Chan, M. K. (2007). Follow-up after curative resection of colorectal cancer: a meta-analysis. Diseases of the Colon & Rectum, 50, 1783–1799.

    Article  Google Scholar 

  13. Zhang, C. L., Huang, T., Wu, B. L., He, W. X., & Liu, D. (2017). Stem cells in cancer therapy: opportunities and challenges. Oncotarget, 8(43), 75756–75766.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sarukhan, A., Zanotti, L., & Viola, A. (2015). Mesenchymal stem cells: myths and reality. Swiss Medical Weekly, 145, w14229.

    PubMed  Google Scholar 

  15. Francois, S., Usunier, B., Forgue-Lafitte, M. E., Homme, B., Benderitter, M., Douay, L., Gorin, N. C., Larsen, A. K., & Chapel, A. (2019). Mesenchymal stem cell administration attenuates colon cancer progression by modulating the immune component within the colorectal tumor microenvironment. Stem Cells Translational Medicines, 8(3), 285–300.

    Article  CAS  Google Scholar 

  16. Rahmani, Z., & Safari, F. (2020). Evaluating the in vitro therapeutic effects of human amniotic mesenchymal stromal cells on MiaPaca2 pancreatic cancer cells using 2D and 3D cell culture model. Tissue Cell, 23(68), 101479.

    Google Scholar 

  17. Safari, F., Shakery, T. & Sayadamin, N. (2021). Evaluating the effect of secretome of human amniotic mesenchymal stromal cells on apoptosis induction and epithelial-mesenchymal transition inhibition in LNCaP prostate cancer cells based on 2D and 3D cell culture models. Cell Biochemistry & Function, 39(6), 813–820.

    Article  CAS  Google Scholar 

  18. Yilmaz, O., & Sakaraya, S. (2018). Is “Hanging Drop” a useful method to form spheroids of Jimt, Mcf-7, T-47d, Bt-474 that are breast cancer cell lines? Single Cell Biology 7, 1000170.

    Google Scholar 

  19. Lia, L., Liuc, H., Baxterb, S. S., Gu, N., Ji, M., & Zhang, X. (2016). The SH3 domain distinguishes the role of I-BAR proteins IRTKS and MIM in chemotactic response to serum. Biochemical and Biophysical Research Communications, 479(4), 787–792.

    Article  Google Scholar 

  20. Roskoski, Jr., R. (2014). The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmaceutical Research, 79, 34–74.

    Article  CAS  Google Scholar 

  21. Talamonti, M. S., Roh, M. S., Curley, S. A., & Gallick, G. E. (1993). Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. Journal of Clinical Investigation, 91, 53–60.

    Article  CAS  PubMed Central  Google Scholar 

  22. Termuhlen, P. M., Curley, S. A., Talamonti, M. S., Saboorian, M. H., & Gallick, G. E. (1993). Site-specific differences in pp60c-src activity in human colorectal metastases. Journal of Surgical Research, 54, 293–298.

    Article  CAS  Google Scholar 

  23. Li, B., Zhang, H., Zeng, M., He, W., Li, M., Huang, X., Deng, D. Y., & Wu, J. (2015). Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting the Wnt/β-catenin pathway. Cell Biology International, 39, 192–200.

    Article  CAS  PubMed  Google Scholar 

  24. Tang, Y. L., Zhao, Q., Qin, X., Shen, L., Cheng, L., Ge, J. & Phillips, M. I. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. The Annals of Thoracic Surgery, 80, 229–236.

    Article  PubMed  Google Scholar 

  25. Wu, S., Ju, G. Q., Du, T., Zhu, Y. J., & Liu, G. H. (2013). Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One, 8, e61366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bermudez, M. A., Sendon-Lago, J., Seoane, S., Eiro, N., Gonzalez, F., Saa, J., Vizoso, F. & Perez-Fernandez, R. (2016). Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Experimental Eye Research, 149, 84–92.

    Article  CAS  PubMed  Google Scholar 

  27. Zagoura, D. S., Roubelakis, M. G., Bitsika, V., Trohatou, O., Pappa, K. I., Kapelouzou, A., Antsaklis, A., & Anagnou, N. P. (2012). Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut, 61, 894–906.

    Article  CAS  PubMed  Google Scholar 

  28. Cantinieaux, D., Quertainmont, R., Blacher, S., Rossi, L., Wanet, T., Noel, A., Brook, G., Schoenen, J., & Franzen, R. (2013). Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: An original strategy to avoid cell transplantation. PLoS One, 8, e69515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, M. J., Kim, J., Lee, K. I., Shin, J. M., Chae, J. I., & Chung, H. M. (2011). Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy, 13, 165–178.

    Article  CAS  PubMed  Google Scholar 

  30. Wu, C., Cui, X., Huang, L., Shang, X., Wu, B., Wang, N., He, K., & Han, Z. (2019). IRTKS promotes insulin signaling transduction through inhibiting SHIP2 phosphatase activity. International Journal of Molecular Science, 20(11), 2834.

    Article  CAS  Google Scholar 

  31. Takahara, K., Ii, M., Inamoto, T., Komura, K., Ibuki, N., Minami, K., Uehara, H., Hirano, H., Nomi, H., Kiyama, S., Asahi, M., & Azuma, H. (2014). Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis. Biochemical and Biophysical Research Communications, 446, 1102–1107.

    Article  CAS  PubMed  Google Scholar 

  32. Sun, B., Roh, K. H., Park, J. R., Lee, S. R., Park, S. B., Jung, J. W., Kang, S. K., Lee, Y. S., & Kang, K. S. (2009). Therapeutic potential of mesenchymal stromal cell s in a mouse breast cancer metastas is model. Cytotherapy, 11, 289–298.

    Article  CAS  PubMed  Google Scholar 

  33. Chao, K. C., Yang, H. T., & Chen, M. W. (2011). Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. Journal of Cell Molecular Medicine, 16, 1803–1815.

    Article  Google Scholar 

  34. Chen, D., Liu, S., Ma, H., Liang, X., Ma, H., Yan, X., Yang, B., Wei, J., & Liu, X. (2015). Paracrine factors from adipose-mesenchymal stem cells enhance metastatic capacity through Wnt signaling pathway in a colon cancer cell co-culture model. Cancer Cell International, 15, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  35. So, K. A., Min, K. J., Hong, J. H., & Lee, J. K. (2015). Interleukin-6 expression by interactions between gynecologic cancer cells and human mesenchymal stem cells promotes epithelial-mesenchymal transition. International Journal of Oncology, 47, 1451–145.

    Article  CAS  PubMed  Google Scholar 

  36. Ma, F., Chen, D., Chen, F., Chi, Y., Han, Z., Feng, X., Li, X., & Han, Z. (2015). Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by interleukin-8- and interleukin-6-dependent induction of CD44+/CD24− Cells. Cell Transplantation, 24, 2585–2599.

    Article  PubMed  Google Scholar 

  37. Scherzad, A., Steber, M., Gehrke, T., Rak, K., Froelich, K., Schenddzielorz, P., Hagen, R., Kleinsasser, N., & Hackenberg, S. (2015). Human mesenchymal stem cells enhance cancer cell proliferation via IL-6 secretion and activation of ERK1/2. International Journal of Oncology, 47, 391–397.

    Article  CAS  PubMed  Google Scholar 

  38. Sadeghi, A., Roudi, R., Mirzaei, A., Zare Mirzaei, A., Madjd, Z., & Abolhasani, M. (2019). CD44 epithelial isoform inversely associates with invasive characteristics of colorectal cancer. Biomarkers in Medicine, 13(6), 419–426.

    Article  CAS  PubMed  Google Scholar 

  39. Roudi, R., Barodabi, M., Madjd, Z., Roviello, G., Corona, S. P., & Panahi, M. (2020). Expression patterns and clinical significance of the potential cancer stem cell markers OCT4 and NANOG in colorectal cancer patients. Molecular & Cellular Oncology, 7(5), 1788366 https://doi.org/10.1080/23723556.2020.1788366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.S. designed the research. S.E.Z. and F.S. performed the experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Fatemeh Safari.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi Zavieh, S., Safari, F. The Antitumor Activity of hAMSCs Secretome in HT-29 Colon Cancer Cells Through Downregulation of EGFR/c-Src/IRTKS Expression and p38/ERK1/2 Phosphorylation. Cell Biochem Biophys 80, 395–402 (2022). https://doi.org/10.1007/s12013-022-01066-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01066-4

Keywords

Navigation