Skip to main content
Log in

Soil Catena Characterization using pXRF and Vis-NIR Spectroscopy in Northwest Turkey

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil profile characterization using Vis-NIR and pXRF provides relatively quick measurements, and can be conducted in-situ. The objectives of this study were to i) characterize soil profiles along a catena using soil data and individual or combined Vis-NIR and pXRF data and ii) compare soil color, chemical properties, physical properties, weathering indices, elemental concentrations, Vis-NIR spectra, pXRF8 spectra, pXRF45 spectra, and combined data to determine useful variables for explaining soil variations along the catena using principal component analysis (PCA). Four soil profiles were described and sampled along a catena in the Central Anatolia Region, Eskişehir, Turkey. Soil samples were collected from delineated horizons and analyzed for the content of sand, silt, clay, electrical conductivity (EC), pH, soil organic matter (SOM), CaCO3, and scanned by Vis-NIR (350–2500 nm) and pXRF (0–8 kV and 0–45 kV) spectrometers. The soil profiles were described as Lithic Xeropsamments, Typic Xeropsamments, and Typic Haploxerepts. It was found that color coordinates (R, G, B, L* and V), physical properties (silt and clay), chemical properties (EC, pH, and CaCO3), weathering indices (SAF and DI), and elemental concentrations (Fe, Ca, K, Ti, Zn, Rb, Sr, Zr, and Ba) increased from P1 to P3 along the soil catena (summit to backslope) in both topsoil and subsoil. Soil depth, the thickness of soil horizons, and the darkness of soil color increased downslope along the catena. Soil physical properties such as sand, silt, and clay content were more useful variables to characterize soil variation along the catena than chemical properties such as EC, pH, SOM, and CaCO3. We conclude that proximal soil sensors such as Vis-NIR and pXRF spectra can be successfully used for pedological characterization of young and developing soils along a catena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Acree, D. C. Weindorf, L. Pauletta, N. van Gestel, S. Chakraborty, T. Man, C. Jordan, and J. L. Prieto, “Soil classification in Romanian catenas via advanced proximal sensor,” Geoderma 377, 114587 (2020).

    Google Scholar 

  2. L. E. Allison and C. D. Moodie, “Carbonate,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (American Society of Agronomy, Madison, WI, 1965), pp. 1379–1396.

  3. R. Andrade, S. H. G. Silva, D. C. Weindorf, S. Chakraborty, W. M. Faria, L. R. G. Guilherme, and N. Curi, “Tropical soil order and suborder prediction combining optical and X-ray approaches,” Geoderma Reg. 23, e00331 (2020).

    Google Scholar 

  4. R. Andrade, W. M. Faria, S. H. G. Silva, S. Chakraborty, D. C. Weindorf, L. F. Mesquita, L. R. G. Guilherme, and N. Curi, “Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains,” Geoderma 357, 113960 (2020b).

    Google Scholar 

  5. R. Andrade, S. H. G. Silva, D. C. Weindorf, S. Chakraborty, W. M. Faria, L. F. Mesquita, L. R. G. Guilherme, and N. Curi, “Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains,” Geoderma 357, 113957 (2020).

    Google Scholar 

  6. L. Benedet, W. M. Faira, S. H. G. Silva, M. Mancini, L. R. G. Guilherme, J. A. M. Dematte, and N. Curi, “Soil subgroup prediction via X-ray fluorescence and visible near-infrared spectroscopy,” Geoderma 365, 114212 (2020).

    Google Scholar 

  7. L. Benedet, S. F. Acuña-Guzman, W. M. Faria, S. H. G. Silva, M. Mancini, A. F. dos Santos Teixeira, L. M. Pereira Pierangeli, et al., “Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms,” Catena 197, 105003 (2021).

    Google Scholar 

  8. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by C. A. Black (American Society of Agronomy, Madison, WI, 1965), pp. 1372–1376.

    Google Scholar 

  9. P. W. Birkeland, Soils and Geomorphology (Oxford University Press, New York, 1999).

    Google Scholar 

  10. G. J. Bouyoucos, “An improved type of soil hydrometer,” Soil Sci. 76, 377–378 (1984).

    Google Scholar 

  11. A. C. Brunner, S. J. Park, G. R. Ruecker, R. Dikau, and P. L. G. Vlek, “Catenary soil development influencing erosion susceptibility along a hillslope in Uganda,” Catena 58, 1–22 (2004).

    Google Scholar 

  12. C. A. Cambardella, T. B. Moorman, J. M. Novak, T. B. Parkin, D. L. Karlen, R. F. Turco, and A. E. Konopka, “Field-scale variability of soil properties in Central Iowa soils,” Soil Sci. Soc. Am. J. 58, 1501–1511 (1994).

    Google Scholar 

  13. S. Chatterjee, A. E. Hartemink, J. Triantafilis, A. R. Desai, D. Soldat, J. Zhu, P. A. Townsend, Y. Zhang, and J. Huang, “Characterization of field-scale soil variation using a stepwise multi-sensor fusion approach and a cost-benefit analysis,” Catena 201, 105190 (2021).

    Google Scholar 

  14. R. Corstanje, R. Schulin, and R. M. Lark, “Scale-dependent relationships between soil organic carbon and urease activity,” Eur. J. Soil Sci. 58, 1087–1095 (2007).

    Google Scholar 

  15. U. Dinç, S. Şenol, S. Kapur, and M., Sarı, “Catenary soil relationships in the Çukurova Region, southern Turkey,” Catena 18 (2), 185–196 (1991).

    Google Scholar 

  16. B. M. Duda, D. C. Weindorf, S. Chakraborty, B. Li, T. Man, L. Paulette, and S. Deb, “Soil characterization across catenas via advanced proximal sensor,” Geoderma 298, 78–91 (2017).

    Google Scholar 

  17. D. M. Evans and A. E. Hartemink, “Terra Rossa catenas in Wisconsin, USA,” Catena 123, 148–152 (2014).

    Google Scholar 

  18. D. M. Evans and A. E. Hartemink, “Digital soil mapping of red clay subsoil covered by loess,” Geoderma 230–231, 296–304 (2014).

    Google Scholar 

  19. A. J. Gerrard, Soils and Landforms: An Integration of Geomorphology and Pedology (George Allen and Unwin, London, 1981).

    Google Scholar 

  20. A. Gholizadeh, M. Saberioon, R. A. Viscarra Rossel, L. Boruvka, and A. Klement, “Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon,” Geoderma 357, 113972 (2020).

    Google Scholar 

  21. M. L. González-Arqueros, L. Vázquez-Selem Gama Castro, J. E. McClung, and E. de Tapia, “Late Holocene erosion events in the Valley of Teotihuacan, central Mexico: insights from a soilgeomorphic analysis of catenas,” Catena 158, 69–81 (2017).

    Google Scholar 

  22. G. Gozukara, Y. Zhang, and A. E. Hartemink, “Using Vis-NIR and pXRF data to distinguish soil parent materials—An example using 136 pedons from Wisconsin, USA,” Geoderma 396, 115091 (2021).

    Google Scholar 

  23. A. E. Hartemink, A. N. Gennadiyev, J. G. Bockheim, and N. Bero, “Short-range variation in a Wisconsin soilscape (USA),” Eurasian Soil Sci. 50, 198–209 (2017).

    Google Scholar 

  24. H. Jenny, Factors of Soil Formation: A System of Quantitative Pedology (McGraw-Hill, New York, 1941). https://doi.org/10.1097/00010694-194111000-00009

  25. H. Jenny, The Soil Resource: Origin and Behavior (Springer-Verlag, New York, 1980).

    Google Scholar 

  26. A. Kabata-Pendias, Trace Elements in Soils and Plants, 4th ed. (CRC Press, Boca Raton, FL, 2010).

    Google Scholar 

  27. L. Khomo, A. S. Hartshorn, K. H. Rogers, and O. A. Chadwick, “Impact of rainfall and topography on the distribution of clays and major cations in granitic catenas of southern Africa,” Catena 87, 119–128 (2011).

    Google Scholar 

  28. N. E. Kosheleva, N. S. Kasimov, and I. V. Timofeev, “Potentially toxic elements in urban soil catenas of W–Mo (Zakamensk, Russia) and Cu–Mo (Erdenet, Mongolia) mining areas,” J. Soils Sediments 18, 2318–2334 (2018).

    Google Scholar 

  29. A. Kassambara and F. Mundt, Factoextra: extract and visualize the results of multivariate data analyses,” R package version 1, 7, 2020. https://CRAN.R-project. org/package=factoextra.

  30. M. Mancini, D. C. Weindorf, S. Chakraborty, S. H. G. Silva, A. F. dos Santos Teixeira, L. R. G. Guilherme, and N. Curi, “Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado,” Geoderma 337, 718–728 (2019).

    Google Scholar 

  31. M. Mancini, S. H. G. Silva, A. F. dos Santos Teixeira, L. R. G. Guilherme, and N. Curi, “Soil parent material prediction for Brazil via proximal soil sensing,” Geoderma Reg. 22, e00310 (2020).

    Google Scholar 

  32. M. Mancini, S. H. G. Silva, A. E. Hartemink, Y. Zhang, A. J. G. Faria, F. M. Silva, A. V. Inda, J. A. M. Dematte, and N. Curi, “Formation and variation of a 4.5 m deep oxisol in southeastern Brazil,” Geoderma 206, 105492 (2021).

    Google Scholar 

  33. S. Mayer, D. Schwindt, M. Steffens, J. Völkel, and I. Kögel-Knabner, “Drivers of organic carbon allocation in a temperate slope-floodplain catena under agricultural use,” Geoderma 327, 63–72 (2018).

    Google Scholar 

  34. B. P. Ruxton, “Measures of the degree of chemical weathering of rocks”. J. Geol. 76, 518–527. (1968).

    Google Scholar 

  35. B. Minasny, A. B. McBratney, B. P. Malone, and I. Wheeler, “Digital mapping of soil carbon,” Adv. Agron. 118, 1–47 (2013).

    Google Scholar 

  36. B. Mohanty, A. Gupta, and B. S. Das, “Estimation of weathering indices using spectral reflectance over visible to mid-infrared region,” Geoderma 266, 111–119 (2016).

    Google Scholar 

  37. S. Mukhopadhyay, S. Chakraborty, P. B. S. Bhadoria, B. Li, and D. C. Weindorf, “Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixProTM sensor in landfill soils of India,” Geoderma Reg. 20, e00249 (2020).

    Google Scholar 

  38. M. Rouillon and M. P. Taylor, “Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research?” Environ. Pollut. 214, 255–264 (2016).

    Google Scholar 

  39. P. Shi, F. Castaldi, B. van Wesemael, and K. van Ooast, “Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt,” Geoderma 357, 113958 (2020).

    Google Scholar 

  40. S. H. G. Silva, A. E. Hartemink, A. F. dos Santos Teixeira, A. V. Inda, L. R. G. Guilherme, and N. Curi, “Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an inceptisol from the Brazilian Cerrado,” Appl. Clay Sci. 162, 27–37 (2018).

    Google Scholar 

  41. F. M. Silva, D. C. Weindorf, S. H. G. Silva, E. A. Silva, B. T. Ribeiro, L. R. G. Guilherme, and N. Curi, “Tropical soil toposequence characterization via pXRF spectrometry,” Soil Sci. Soc. Am. J. 83, 1153–1166 (2019).

    Google Scholar 

  42. S. H. G. Silva, D. C. Weindorf, L. C. Pinto, W. M. Faria, F. W. Acerbi Jr., L. R. Gomide, J. M. Mello, A. L. Pádua Jr., I. A. Souza, A. F. S. Teixeira, L. R. G. Guilherme, and N. Curi, “Soil texture prediction in tropical soils: a portable X-ray fluorescence spectrometry approach,” Geoderma 362, 114136 (2020).

    Google Scholar 

  43. T. Simon, Y. Zhang, A. E. Hartemink, J. Huang, C. Walter, and J. L. Yost, “Predicting the color of sandy soils from Wisconsin, USA,” Geoderma 361, 114039 (2020).

    Google Scholar 

  44. P. Singh and D. K. Benbi, “Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas,” Catena 166, 171–180 (2018).

    Google Scholar 

  45. U. Stockmann, S. R. Cattle, B. Minasny, and A. B. McBratney, “Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis,” Catena 139, 220–231 (2016).

    Google Scholar 

  46. F. Sun, N. Bakr, T. Dang, V. Pham, D. C. Weindorf, Z. Jiang, H. Li, and Q. Wang, “Enhanced soil profile visualization using portable X-ray fluorescence (PXRF) spectrometry,” Geoderma 358, 113997 (2020).

    Google Scholar 

  47. F. S. Terra, J. A. Demattê, and R. A. Viscarra Rossel, “Proximal spectral sensing in pedological assessments: vis–NIR spectra for soil classification based on weathering and pedogenesis,” Geoderma 318, 123–136 (2018).

    Google Scholar 

  48. Z. Tümsavaş, Y. Tekin, Y. Ulusoy, and A. M. Mouazen, “Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy,” Biosyst. Eng. 177, 90–100 (2019).

    Google Scholar 

  49. R. A. Viscarra Rossel, B. Minasny, P. Roudier, and A. B. McBratney, “Color space models for soil science,” Geoderma 133, 320–337 (2006).

    Google Scholar 

  50. R. A. Viscarra Rossel, S. R. Cattle, A. Ortega, and Y. Fouad, “In situ measurements of soil color, mineral composition and clay content by vis-NIR spectroscopy,” Geoderma 150, 253–256 (2009).

    Google Scholar 

  51. R. A. Viscarra Rossel, A. B. McBratney, and B. Minasny, Proximal Soil Sensing (Springer-Verlag, Dordrecht, 2010).

    Google Scholar 

  52. R. A. Viscarra Rossel and R. Webster, “Discrimination of Australian soil horizons and classes from their visible–near infrared spectra,” Eur. J. Soil Sci. 62 (4), 637–647 (2011).

    Google Scholar 

  53. R. M. Yang, “Characterization of the salt marsh soils and visible-near-infrared spectroscopy along a chronosequence of Spartina alterniflora invasion in a coastal wetland of eastern China,” Geoderma 362, 114138 (2020).

    Google Scholar 

  54. J. L. Yost and A. E. Hartemink, “Effect of carbon on moisture storage in soils of the Wisconsin Central Sands, USA,” Eur. J. Soil Sci. 70, 565–577 (2019).

    Google Scholar 

  55. J. L. Yost, E. E. Roden, and A. E. Hartemink, “Geochemical fingerprint and soil carbon of sandy alfisols,” Soil Syst. 3 (3), 59 (2019). https://doi.org/10.3390/soilsystems3030059

    Article  Google Scholar 

  56. Y. Zhang and A. E. Hartemink, “Soil horizon delineation using vis-NIR and pXRF data,” Catena 180, 298–308 (2019).

    Google Scholar 

  57. Y. Zhang and A. E. Hartemink, “Data fusion of Vis-NIR and pXRF spectra to predict soil physical and chemical properties,” Eur. J. Soil Sci. 71, 316–333 (2020).

    Google Scholar 

  58. Y. Zhang and A. E. Hartemink, “Quantifying short-range variation of soil texture and total carbon of a 330-ha farm,” Catena 201, 105200 (2021).

    Google Scholar 

  59. Y. Zhang, A. E. Hartemink, and J. Huang, “Spectral signatures of soil horizons and soil orders-An exploratory study of 270 soil profiles,” Geoderma 389, 114961 (2021).

    Google Scholar 

  60. Y. Zhu, D. C. Weindorf, and W. Zhang, “Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture,” Geoderma 167–168, 167–177 (2011).

    Google Scholar 

  61. M. Wan, W. Hu, M. Qu, W. Li, C. Zhang, J. Kang, Y. Hong, Y. Chen, and B. Huang, “Rapid estimation of soil cation exchange capacity through sensor data fusion or portable XRF spectrometry and Vis-NIR spectroscopy,” Geoderma 363, 114163. (2020).

    Google Scholar 

  62. D. C. Weindorf, Y. Zhu, P. McDaniel, M. Valerio, L. Lynn, G. Michaelson, M. Clark, and C. L. Ping, “Characterizing soils via potable x-ray fluorescence spectrometer: 2. Spodic and albic horizons,” Geoderma 189–190, 268–277 (2012).

    Google Scholar 

  63. Soil Survey Staff, Kellogg Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 5.0, Ed. by R. Burt, (US Department of Agriculture, Natural Resources Conservation Service, Lincoln, NE, 2014).

    Google Scholar 

  64. “CIE recommendations on uniform color spaces, color-difference equations, and metric color terms,” Color: Res. Appl. 2 (1), 5–6 (1977).

  65. R Core Team, R: A Language and Environment for Statistical Computing (Vienna, 2016). http://www.R-project.org/.

  66. T. F. A. Bishop, A. B. McBratney, and G. M. Laslett, “Modelling soil attribute depth functions with equal-area quadratic smoothing splines,” Geoderma 91, 27–45 (1999).

    Google Scholar 

  67. J. Maynard, “Chemistry of modern soils as a guide to interpreting Precambrian paleosols,” J. Geol. 100, 279–289 (1992).

    Google Scholar 

  68. Commission Internationale de l'Éclairage Huitieme Session, Cambridge–Septembre 1931 (Cambridge University Press, Cambridge, 1931).

  69. G. H. Joblove and D. Greenberg, “Color spaces for computer graphics,” Comput. Graph. 12, 20–25 (1978).

    Google Scholar 

  70. L. P. Singh, B. Parkash, and A. K. Singhvi, “Evolution of the lower gangetic plain landforms and soils in West Bengal, India,” Catena 33, 75–104 (1998).

    Google Scholar 

  71. G. Gozukara, Y. Zhang, A. E. Hartemink, S. Altunbas, and M. Sarı “Soil chronosequence and biosequence on old lake sediments of Burdur Lake in Turkey,” Pedosphere 31 (6), 882–891 (2021).

    Google Scholar 

  72. G. Milne, A Soil Reconnaissance Journey in Parts of Tanga, East, Central & Lakes & Western Provinces of Tanganyika Territory December 1935 to February 1936 (Department of Agriculture, Dares Salaam, 1936). http:// www.wossac.com/search/wossac_detail.cfm?ID=44718.

  73. G. Milne, “A soil reconnaissance journey through part of Tanganyika Territory December 1935 to February 1936,” J. Ecol. 35, 192–265 (1947). http://www.wossac. com/search/wossac_detail.cfm?ID=131.

    Google Scholar 

Download references

Funding

This work has been supported by Eskisehir Osmangazi University Scientific Research Projects Coordination Unit under grant number 202023D21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gozukara.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozukara, G., Hartemink, A.E. & Zhang, Y. Soil Catena Characterization using pXRF and Vis-NIR Spectroscopy in Northwest Turkey. Eurasian Soil Sc. 54 (Suppl 1), S1–S15 (2021). https://doi.org/10.1134/S1064229322030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322030061

Keywords:

Navigation