Skip to main content
Log in

A DAPI-Based Modified C-banding Technique for a Rapid Achieving High Photographic Contrast of Centromeres on Chromosomes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Many chromosome assays rely on the quantification of chromosome abnormalities in cells, and one important abnormality is the existence of more than one centromere for each chromosome. The quantification of such abnormalities has been studied before. However, this process is labor-intensive and time consuming. Thus, this assay is challenging for ex-laboratory applications, where speed is required. We present a visualization method that uses a cheap stain—DAPI, long (e.g., high-resolution) chromosomes and our modified C-banding method for labeling chromosomes. The labeled chromosomes can then be easily seen with a conventional and readily available fluorescence microscopy system. This method achieves an acceleration of the detection of the presence of constitutive heterochromatin in chromosomal centromeres by more than 10 times, to ~2 h, in Human lymphocyte cells and in cells of the human Jurkat line. This new procedure will ultimately provide an easier and cheaper alternative to FISH/PNA probes, or the classic Giemsa staining method. Simplification and reduction in time of the overall procedure will enable the utilization of centromere-counting assays in laboratory and ex-laboratory applications, including in emergency response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and are available from the corresponding author on reasonable request.

References

  1. Ponnuraj K. T., “Cytogenetic Techniques in Diagnosing Genetic Disorders” in Ikehara K. (ed.) “Advances in the Study of Genetic Disorders”, Intechopen.com, (2011).

  2. Bickmore W., “Karyotype Analysis and Chromosome Banding” in “Encyclopaedia of Life Science”, (Wiley, 2001).

  3. IAEA-1. Cytogenetic dosimetry applications in preparedness for and response toradiation emergencies, in: EPR-Biodose, (IAEA, Vienna, 2011).

  4. IAEA-2. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. Section 9.1.5, 9.1.6, 9.1.2, pp. 55–58. (2011).

  5. TM8-125, Nuclear Handbook for Medical Service Personnel, (US Army, 1969).

  6. Bader J., Coleman N., Chang F., “About Dicentric Chromosome Assays. Retrieved from REMM—Radiation Emergency Medical Management”, last updated in (2021), www.remm.nlm.gov/aboutdicentrics.htm.

  7. ISO 21243. International Organization for Standardization. Radiation Protection. Performance Criteria for Laboratories performing Cytogenetic triage for Assessment of Mass Casualties in Radiological or Nuclear Emergencies—General Principles and application to the Dicentric Assay. (Geneva, 2008). https://www.iso.org/standard/40088.html.

  8. Edwards, A., Voisin, P., Sorokine-Durm, I., Maznik, N., Vinnikov, V., Mikhalevich, L., Moquet, J., Lloyd, D., Delbos, M., & Durand, V. (2004). Biological estimates of dose to inhabitants of Belarus and Ukraine following the Chernobyl accident. Radiation Protection Dosimetry, 111(2), 211–219.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, J. K., Han, E. A., Lee, S. S., Ha, W. H., Barquinero, J. F., Lee, H. R., & Cho, M. S. (2012). Cytogenetic biodosimetry for Fukushima travelers after the nuclear power plant accident: no evidence of enhanced yield of dicentrics. Journal of Radiation Research, 53(6), 876–881.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suto, Y., Hirai, M., Akiyama, M., Kobashi, G., Itokawa, M., Akashi, M., & Sugiura, N. (2013). Biodosimetry of restoration workers for the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power station accident, Health Physics, 105(4), 366–373.

    Article  CAS  PubMed  Google Scholar 

  11. M’kacher, R., Maalouf, E. E., Ricoul, M., Heidingsfelder, L., Laplagne, E., Cuceu, C., Hempel, W. M., Colicchio, B., Dieterlen, A., & Sabatier, L. (2014). New tool for biological dosimetry: reevaluation and automation of thegold standard method following telomere and centromere staining. Mutation Research, 770, 45–53. pp.

    Article  PubMed  Google Scholar 

  12. Thiago, S. F., Lloyd, D., & Amaral, A. (2008). A comparison of different cytological stains for biological dosimetry. International Journal of Radiation Biology, 84, 703–711.

    Article  Google Scholar 

  13. Nakata, A., Akiyama, M., Yamada, Y., & Yoshida, M. A. (2011). “Modified c-band technique for the analysis of chromosome abnornalities in irradiated human lymphocytes”. Radiation Measurements, 46, 1113–1116. pp.

    Article  CAS  Google Scholar 

  14. Pardue M. L. In Nucleic Acid Hybridization, A Practical Approach,. B. D. Hames and S. J. Higgins, Eds., (IRL Press, Oxford, England, 1985).

  15. Thermo-1. (2022). Thermofisher.com/il/en/home/life-science/cell-analysis/fluorophores/dapi-stain.html

  16. Katrina A., Estandarte C., “A Review of the Different Staining Techniques for Human Metaphase Chromosomes”. Submitted in partial fulfillment of the requirements for the degree of master’s in research at the (University of London February 24, 2012).

  17. Kim, S. K., Eriksson, S., Kubista, M., & Norden, B. (1993). Interaction of 4′,6-diamidino-2-phenylindole (DAPI) with poly d(G-C)2 and poly d(G-M5C)2—evidence for major groove binding of a DNA probe. Journal of The American Chemical Society, 115(9), 3441–3447.

    Article  CAS  Google Scholar 

  18. Wilson, W. D., Tanious, F. A., Barton, H. J., Jones, R. L., Fox, K., Wydra, R. L., & Strekowski, L. (1990). DNA sequences dependent binding modes of 4′,6-diamidino-2-phenylindole (DAPI). Biochemistry, 29(36), 8452–8461.

    Article  CAS  PubMed  Google Scholar 

  19. Fernández, R., Barragán, M. J., Bullejos, M., Marchal, J. A., Díaz De La Guardia, R., & Sanchez, A. (2002). New C-band protocol by heat denaturation in the presence of formamide. Hereditas, 137(2), 145–148.

    Article  PubMed  Google Scholar 

  20. Arrighi, F. E., & Hsu, T. C. (1971). “Localization of Heterochromatin in human chromosomes. Cytogen, 10, 81–86.

    Article  CAS  Google Scholar 

  21. Balajee, A. S., & Hande, M. P. (2018). History and evolution of cytogenetic techniques: current and future applications in basic and clinical research. Mutation Research/Genetic Toxicology, 836, 3–12. pp.

    Article  CAS  Google Scholar 

  22. Craig-Holmes, A. P., Moore, F. B., & Shaw, M. W. (1973). Polymorphism of human C-band heterochromatin. I. frequency of variants. American Journal Of Human Genetics, 25, 181–192.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sumner, A. T. (1972). A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research, 75, 304–306.

    Article  CAS  PubMed  Google Scholar 

  24. De Braekeleer, M., Keushnig, M., & Lin, C. C. (1986). A high-resolution C-banding technique. Canadian Journal of Genetics and Cytology, 28(2), 317–322.

    Article  Google Scholar 

  25. Rogan, P. K., Li, Y., Wickramasinghe, A., Subasinghe, A., Caminsky, N., Khan, W., Samarabandu, J., Wilkins, R. C., Flegal, F., & Knoll, J. H. (2014). “Automating dicentric chromosome detection from cytogenetic bio-dosimetry data”. Radiation Protection Dosimetry, 159, 95–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, Y., Knoll, J. H., Wilkins, R. C., Flegal, F. H., & Rogan, P. K. (2016). Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing. Microscopy Research and Technique, 79, 393–402.

    Article  CAS  PubMed  Google Scholar 

  27. Morris, C. M., & Fitzgerald, P. H. (1985). An evaluation of high resolution chromosome banding of hematologic cells by methotrexate synchronization and thymidine release. Cancer Genetics and Cytogenetics, 14(3-4), 275–278.

    Article  CAS  PubMed  Google Scholar 

  28. Henegariu, O., Heerema, N. A., Wright, L. L., Ward, P. B., & Vance, G. H. (2001). Improvements in Cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry, 43, 101–109.

    Article  CAS  PubMed  Google Scholar 

  29. Saitoh, K. (1986). A preliminary note on chromosomes of F1 hybrid between middle and small races of the striated spined loach (Cobitis taenia striata). Annual Report of the Biwako Bunkakan, 4, 62–65. http://cse.fra.affrc.go.jp/ksaitoh/C-banding-e.html.

    Google Scholar 

  30. Saitoh, K. (2003). Mitotic and meiotic analyses of the ‘large race’ of Cobitis striata, a polyploid spined loach of hybrid origin. Folia Biologica (Kraków), 51(Suppl), 101–105. http://cse.fra.affrc.go.jp/ksaitoh/C-banding-e.html.

    Google Scholar 

  31. Holmquist, G. (1979). The mechanism of C-banding: depurination and β-elimination. Chromosoma, 72, 203–224.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the aid provided by Prof. Aryeh Weiss in helpful discussions, to this work.

Author contributions

Concept and design: R.G., M.P. Data Acquisition: R.G., Z.G., and S.S. Data analysis: R.G., M.P., Z.G., and S.S. Data interpretation: R.G., M.P., Z.G., M.W., and I.L. Drafting the paper: R.G., M.P. Critical revision of the paper: All authors. Securing funding: R.G., E.M. Admin/technical/material support: R.G., E.M., I.L., and M.W. Supervision: R.G., E.M. Final approval: all authors.

Funding

Institute of Genetics—Soroka Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Gonen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Samples used in this study were obtained as part of routine medical care. Ethical approval for use of these samples for research purposes was not required for this study in accordance with local/national guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This table shows the historical landmarks in the development of C-Banding techniques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonen, R., Platkov, M., Gardos, Z. et al. A DAPI-Based Modified C-banding Technique for a Rapid Achieving High Photographic Contrast of Centromeres on Chromosomes. Cell Biochem Biophys 80, 375–384 (2022). https://doi.org/10.1007/s12013-022-01065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01065-5

Keywords

Navigation