Skip to main content
Log in

Estimation of the Broken Cloud Effect on Retrieving Reflectance of Cloudless Earth Surface Regions from MODIS Imagery

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

An algorithm for estimating the range of influence of broken cloudiness on the results of retrieving reflectance of cloudless Earth surface regions is proposed for satellite observations through gaps in a cloud field. The algorithm is based on the Monte Carlo method of simulation of radiation transfer in broken stochastic cloudiness with averaging over the cloud field. Two models of cloud fields are considered: the field shapes as parallelepipeds and paraboloids. The method is tested for two fragments of the real MODIS image with the coordinates of 53.4°–56.4° N, 109°–115° E and 49.0°–51.0° N, 121°–123° E. The results of computations show that the effect of cloudiness is significant at distances up to 25 km for the first image fragment and up to 5–7 km for the second one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. T. B. Zhuravleva, I. M. Nasrtdinov, and T. V. Russkova, “Influence of 3D Cloud Effects on Spatial-angular Characteristics of the Reflected Solar Radiation Field,” Optika Atmosfery i Okeana, No. 9, 29 (2016) [Atmos. Ocean. Opt., 30 (2017)].

  2. V. E. Zuev and G. A. Titov, Modern Problems of Atmospheric Optics, Vol. 9: Atmospheric Optics and Climate (Spektr, Tomsk, 1996) [in Russian].

    Google Scholar 

  3. B. A. Kargin and S. M. Prigarin, “Imitational Simulation of Cumulus Clouds for Studying Solar Radiative Transfer in the Atmosphere by the Monte Carlo Method,” Optika Atmosfery i Okeana, No. 9, 7 (1994) [in Russian].

  4. L. V. Katkovsky, “Parameterization of Outgoing Radiation for Quick Atmospheric Correction of Hyperspectral Images,” Optika Atmosfery i Okeana, No. 9, 29 (2016) [in Russian].

  5. A. V. Kozhevnikova, M. V. Tarasenkov, and V. V. Belov, “Parallel Computations for Solving Problems of the Reconstruction of the Reflection Coefficient of the Earth’s Surface by Satellite Data,” Optika Atmosfery i Okeana, No. 2, 26 (2013) [Atmos. Ocean. Opt., No. 4, 26 (2013)].

    Article  Google Scholar 

  6. S. A. Lysenko, “Atmospheric Correction of Multispectral Satellite Images Based on the Solar Radiation Transfer Approximation Model,” Optika Atmosfery i Okeana, No. 9, 30 (2017) [Atmos. Ocean. Opt., No. 1, 31 (2018)].

    Article  Google Scholar 

  7. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  8. S. M. Prigarin, T. B. Zhuravleva, and P. V. Volikova, “Poisson Model of Multilayer Broken Clouds,” Optika Atmosfery i Okeana, No. 10, 15 (2002) [in Russian].

  9. M. V. Tarasenkov, A. V. Zimovaya, V. V. Belov, and M. V. Engel’, “Retrieval of Reflection Coefficients of the Earth’s Surface from MODIS Satellite Measurements Considering Radiation Polarization,” Optika Atmosfery i Okeana, No. 8, 32 (2019) [Atmos. Ocean. Opt., No. 2, 33 (2020)].

    Article  Google Scholar 

  10. M. V. Tarasenkov, I. V. Kirnos, and V. V. Belov, “Observation of the Earth’s Surface from the Space through a Gap in a Cloud Field,” Optika Atmosfery i Okeana, No. 9, 29 (2016) [Atmos. Ocean. Opt., No. 1, 30 (2017)].

    Article  Google Scholar 

  11. G. A. Titov, Statistical Description of Optical Radiation Transfer in Clouds, Doctor’s Thesis in Physics and Mathematics (IOA SO AN SSSR, Tomsk, 1988) [in Russian].

  12. F. M. Breon and E. Vermote, “Correction of MODIS Surface Reflectance Time Series for BRDF Effects,” Remote Sens. Environ., 125 (2012).

    Article  Google Scholar 

  13. M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: The Software Package OPAC,” Bull. Amer. Meteorol. Soc., No. 5, 79 (1998).

  14. F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User Guide to LOWTRAN-7. ARGL-TR-86-0177. ERP 1010 (Hanscom AFB, MA 01731, 1988).

  15. A. Lyapustin, J. Martonchik, Y. J. Wang, I. Laszlo, and S. Korkin, “Multiangle Implementation of Atmospheric Correction (MAIAC): 1. Radiative Transfer Basis and Look-up Tables,” J. Geophys. Res. Atmos., 116 (2011).

  16. A. Marshak, A. Davis, W. Wiscombe, and R. Cahalan, “Radiative Smoothing in Fractal Clouds,” J. Geophys. Res. Atmos., No. D12, 100 (1995).

    Article  Google Scholar 

  17. A. Marshak, K. F. Evans, T. Varnai, and G. Wen, “Extending 3D Near-cloud Corrections from Shorter to Longer Wavelengths,” J. Quant. Spectroscopy and Radiative Transfer, 147 (2014).

    Article  Google Scholar 

  18. A. Marshak, G. Wen, J. A. Coakley Jr., L. A. Remer, N. G. Loeb, and R. F. Cahalan, “A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols near Clouds,” J. Geophys. Res., 113 (2008).

  19. O. V. Nikolaeva, L. P. Bass, T. A. Germogenova, A. A. Kokhanovsky, V. S. Kuznetsov, and B. Mayer, “The Influence of Neighbouring Clouds on the Clear Sky Reflectance Studied with the 3-D Transport Code RADUGA,” J. Quant. Spectroscopy and Radiative Transfer, No. 3–4, 94 (2005).

    Article  Google Scholar 

  20. S. M. Prigarin, B. A. Kargin, and U. G. Oppel, “Random Fields of Broken Clouds and Their Associated Direct Solar Radiation, Scattered Transmission and Albedo,” Pure and Appl. Optics, 7 (1998).

    Article  Google Scholar 

  21. G. A. Titov, T. B. Zhuravleva, and V. E. Zuev, “Mean Radiation Fluxes in the Near-IR Spectral Range: Algorithms for Calculation,” J. Geophys. Res. Atmos., No. D2, 102 (1997).

    Article  Google Scholar 

  22. T. Varnai and A. Marshak, “MODIS Observations of Enhanced Clear Sky Reflectance near Clouds,” Geophys. Res. Lett., 36 (2009).

  23. G. Wen, A. Marshak, R. F. Cahalan, L. A. Remer, and R. G. Kleidman, “3-D Aerosol-cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields,” J. Geophys. Res., 112 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tarasenkov.

Additional information

Translated from Meteorologiya i Gidrologiya, 2021, No. 11, pp. 36-46. https://doi.org/10.52002/0130-2906-2021-11-36-46.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenkov, M.V., Zonov, M.N., Engel’, M.V. et al. Estimation of the Broken Cloud Effect on Retrieving Reflectance of Cloudless Earth Surface Regions from MODIS Imagery. Russ. Meteorol. Hydrol. 46, 747–754 (2021). https://doi.org/10.3103/S1068373921110030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921110030

Keywords

Navigation