Skip to main content
Log in

The Composition and Growth Mechanism of Coexisting 4M2 and 4A8 Biotite Polytypes from Rhyolite of Long Valley Caldera, California

  • Published:
Clays and Clay Minerals

Abstract

Polytypism is common in micas, and the frequency of polytype occurrence is believed to be related closely to the crystallization conditions and chemical compositions of the corresponding fluids and melts. Coexisting multiple standard and complex/disordered polytypes in igneous rocks generally reflect a complicated magma evolution history. The purpose of the current study was to clarify the origin of coexisting biotite polytypes and their growth mechanism. Micro-X-ray diffraction (μXRD) and transmission electron microscopy (TEM) were used to investigate Fe-rich biotite phenocrysts in rhyolite from the Long Valley Caldera, California, USA. The μXRD analyses characterized various polytypes, and TEM observations revealed that common polytypes (e.g. 1M, 2M1, and 3T) and rare polytypes (e.g. 4M2 and 4A8) coexist within biotite monocrystals. The two 4-layer polytypes of Fe-rich biotite, 4M2 and 4A8, were identified via selected-area electron diffraction (SAED) and high-resolution scanning transmission electron microscopy (HRSTEM) at the atomic resolution, with unique stacking sequences ([0222] for 4M2 and [002\(\overline{2 }\)] for 4A8). Energy-dispersive X-ray spectroscopy (EDS) results showed differences in their chemical compositions, especially Fe and K. The 4A8 polytype is reported for the first time. The present study suggested that environmental changes, such as rapid cooling and inhomogeneous compositional distribution, led to chemical and structural oscillations and complex nucleation of the two 4-layer polytypes. Screw dislocations producing spiral growth enhance polytype stability and form ordered long-period/complex polytypes. These results are useful to understand the origin of long-period/complex polytypes and the intergrowths of diverse polytypes formed in non-equilibrium crystallization environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey, S. W. (1984). Review of cation ordering in micas. Clays and Clay Minerals, 32, 81–92.

    Article  Google Scholar 

  • Banfield, J. F., & Murakami, T. (1998). Atomic-resolution electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlorite-vermiculite. American Mineralogist, 83, 348–357.

    Article  Google Scholar 

  • Baronnet, A. (1992). Polytypism and stacking disorder. Minerals and Reactions at the Atomic Scale, 27, 231–288.

    Article  Google Scholar 

  • Baronnet, A., & Amouric, M. (1986). Growth spirals and complex polytypism in micas. II. occurrence frequencies in synthetic species. Bulletin de Mineralogie, 109, 489–508.

    Article  Google Scholar 

  • Baronnet, A., & Kang, Z. C. (1989). About the origin of mica polytypes. Phase Transitions, 16, 477–493.

    Article  Google Scholar 

  • Baronnet, A., Amouric, M., & Chabot, B. (1976). Mécanismes de croissance, polytypisme et polymorphisme de la muscovite hydroxylée synthétique. Journal of Crystal Growth, 32, 37–59.

    Article  Google Scholar 

  • Baronnet, A., Nitsche, S., & Kang, Z. C. (1993). Layer stacking microstructures in a biotite single crystal: A combined HRTEM–AEM study. Phase Transitions, 143, 107–128.

    Article  Google Scholar 

  • Bigi, S., & Brigatti, M. F. (1994). Crystal chemistry and microstructures of plutonic biotite. American Mineralogist, 79, 63–72.

    Google Scholar 

  • Bozhilov, K. N., Xu, Z., Dobrzhinetskaya, L. F., Jin, Z. M., & Green, H. W. (2009). Cation-deficient phlogopitic mica exsolution in diopside from garnet peridotite in SuLu, China. Lithos, 109, 304–313.

    Article  Google Scholar 

  • Brigatti, M. F., & Guggenheim, S. (2002). Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Reviews in Mineralogy and Geochemistry, 46, 1–97.

    Article  Google Scholar 

  • Brigatti, M. F., Guidotti, C. V., Malferrari, D., & Sassi, F. P. (2008). Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequences from western Maine. American Mineralogist, 93, 396–408.

    Article  Google Scholar 

  • Ferraris, G., & Ivaldi, G. (2002). Structural features of micas. Reviews in Mineralogy and Geochemistry, 46, 117–153.

    Article  Google Scholar 

  • Ferraris, G., Gula, A., Ivaldi, G., Nespolo, M., Sokolova, E., Uvarova, Y., & Khomyakov, P. (2001). First structure determination of an MDO-2O mica polytype associated with a 1M polytype. European Journal of Mineralogy, 13, 1013–1023.

    Article  Google Scholar 

  • Fregola, R. A., & Scandale, E. (2011). A 94-layer long-period mica polytype: A TEM study. American Mineralogist, 96, 172–178.

    Article  Google Scholar 

  • Fregola, R. A., Capitani, G., Scandale, E., & Ottolini, L. (2009). Chemical control of 3T stacking order in a Li-poor biotite mica. American Mineralogist, 94, 334–344.

    Article  Google Scholar 

  • Gilmer, G. H. (1977). Computer simulation of crystal growth. Journal of Crystal Growth, 42, 3–10.

    Article  Google Scholar 

  • Guggenheim, S., Bain, D. C., Bergaya, F., Brigatti, M. F., Drits, V. A., Eberl, D. D., Formoso, M. L., Galán, E., Merriman, R. J., Peacor, D. R., Stanjek, H., & Watanabe, T. (2002). Report of the association internationale pour l’étude des argiles (AIPEA) nomenclature committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the “crystallinity index.” Clays and Clay Minerals, 50, 406–409.

    Article  Google Scholar 

  • Guinier, A., Bokij, G. B., Boll-Dornberger, K., Cowley, J. M., Jagodzinski, H., Krishna, P., Zvyagin, B. B., Cox, D. E., Goodman, P., Hahn, Th., Kuchitsu, K., & Abrahams, S. C. (1984). Nomenclature of polytype structures. Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Disordered, Modulated, and Polytype Structures. Acta Crystallographica, A40, 399–404.

    Article  Google Scholar 

  • Güven, Ν, & Burnham, C. W. (1967). The crystal structure of 3Τ muscovite. Zeitschrift Für Kristallographie Crystalline Materials, 125, 163–183.

    Article  Google Scholar 

  • He, H. P., Yang, Y. P., Ma, L. Y., Su, X. L., Xian, H. Y., Zhu, J. X., Teng, H., & Guggenheim, S. (2021). Evidence for a two-stage particle attachment mechanism for phyllosilicate crystallization in geological processes. American Mineralogist, 106, 983–993.

    Article  Google Scholar 

  • Hooper, W. P., & Eloranta, E. W. (1986). Lidar measurements of wind in the planetary boundary layer: The method, accuracy and results from joint measure-ments with radiosonde and kytoon. Journal of Climate and Applied Meteorology, 25, 990–1001.

    Article  Google Scholar 

  • Iijima, S., & Buseck, P. R. (1978). Experimental study of disordered mica structures by high-resolution electron microscopy. Acta Crystallographica, A34, 709–719.

    Article  Google Scholar 

  • Kogure, T. (2002). Investigations of micas using advanced transmission electron microscopy. Reviews in Mineralogy and Geochemistry, 46, 281–312.

    Article  Google Scholar 

  • Kogure, T., & Banfield, J. F. (1998). Direct identification of the six polytypes of chlorite characterized by semi-random stacking. American Mineralogist, 83, 925–930.

    Article  Google Scholar 

  • Kogure, T., & Nespolo, M. (1999). TEM study of long-period mica polytypes: Determination of the stacking sequence of oxybiotite by means of atomic resolution images and Periodic Intensity Distribution (PID). Acta Crystallographica Section B - Structural Science, 55, 507–516.

    Article  Google Scholar 

  • Lacalamita, M., Mesto, E., Scordari, F., & Schingaro, E. (2012a). Chemical and structural study of 1M- and 2M1 - phlogopites coexisting in the same Kasenyi kamafugitic rock (SW Uganda). Physics and Chemistry of Minerals, 39, 601–611.

    Article  Google Scholar 

  • Lacalamita, M., Scordari, F., Schingaro, E., & Mesto, E. (2012b). Crystal chemistry of trioctahedral micas - 2M1 from Bunyaruguru (SW Uganda) kamafugite. American Mineralogist, 97, 430–439.

    Article  Google Scholar 

  • Laurora, A., Brigatti, M. F., Mottana, A., Malferrari, D., & Caprilli, E. (2007). Crystal chemistry of trioctahedral micas in alkaline and subalkaline volcanic rocks: A case study from Mt. Sassetto (Tolfa district, Latium, central Italy). American Mineralogist, 92, 468–480.

    Article  Google Scholar 

  • Metz, J. M., & Mahood, G. A. (1991). Development of the long valley, California, magma chamber recorded in precaldera rhyolite lavas of glass mountain. Contributions to Mineralogy and Petrology, 106, 379–397.

    Article  Google Scholar 

  • Nespolo, M. (1999). Analysis of family reflections of OD mica polytypes, and its application to twin identification. Mineralogical Journal, 21, 53–85.

    Article  Google Scholar 

  • Nespolo, M. (2001). Perturbative theory of mica polytypism. Role of the M2 layer in the formation of inhomogeneous polytypes. Clays and Clay Minerals, 49, 1–23.

    Article  Google Scholar 

  • Nespolo, M., & Ďurovič, S. (2002). Crystallographic basis of polytypism and twinning in micas. In A. Mottana, F. P. Sassi, & J. B. S. ThompsonGuggenheim (Eds.), Micas: Crystal chemistry and metamorphic petrology (pp. 155–279). Springer.

    Chapter  Google Scholar 

  • Nespolo, M., Takeda, H., Kogure, T., & Ferraris, G. (1999). Periodic intensity distribution (PID) of mica polytypes: Symbolism, structural model orientation and axial settings. Acta Crystallographica Section A, 55, 659–676.

    Article  Google Scholar 

  • Pauling, L. (1930). The rotational motion of molecules in crystals. Physical Review, 36, 430–443.

    Article  Google Scholar 

  • Penn, R. L., & Banfield, J. F. (1998). Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. American Mineralogist, 83, 1077–1082.

    Article  Google Scholar 

  • Pennycook, S. J. (2002). Structure determination through Z-contrast microscopy. Advances in Imaging & Electron Physics, 123, 173–206.

    Article  Google Scholar 

  • Pignatelli, I., & Nespolo, M. (2011). 5M3 ferriphlogopite from the Ruiz Peak (New Mexico, USA): First occurrence of a mica polytype with coexistence of M1- and M2- layers. European Journal of Mineralogy, 23, 703–715.

    Article  Google Scholar 

  • Pignatelli, I., Dusek, M., De Titta, G., & Nespolo, M. (2011). Structural modelling, refinement and possible formation mechanism of a 4M3 non-MDO ferriphlogopite (Ruiz Peak volcano). European Journal of Mineralogy, 23, 73–84.

    Article  Google Scholar 

  • Pignatelli, I., Faure, F., & Mosser-Ruck, R. (2016). Self-mixing magma in the Ruiz Peak rhyodacite (New Mexico, USA): A mechanism explaining the formation of long period polytypes of mica. Lithos, 266, 332–347.

    Article  Google Scholar 

  • Ramsdell, L. S. (1947). Studies on silicon carbide. American Mineralogist, 32, 64–82.

    Google Scholar 

  • Ross, M., Takeda, H., & Wones, D. R. (1966). Mica polytypes: Systematic description and identification. Science, 151, 191–193.

    Article  Google Scholar 

  • Rule, A. C., Bailey, S. W., Livi, K. J., & Veblen, D. R. (1987). Complex stacking sequence in a lepidotite from Tørdal, Norway. American Mineralogist, 72, 1163–1169.

    Google Scholar 

  • Smith, J. V., & Yoder, H. S. (1956). Experimental and theoretical studies of the mica polymorphs. Mineralogical Magazine, 31, 209–235.

    Article  Google Scholar 

  • Stöckhert, B. (1985). Compositional control on the polymorphism 2M1 - 3T of phengitic white mica from high pressure parageneses of the Sesia Zone (lower Aosta valley, Western Alps; Italy). Contributions to Mineralogy and Petrology, 89, 52–58.

    Article  Google Scholar 

  • Stranski, I. N. (1928). Zur Theorie des Kristallwachstums. Zeitschrift Für Physikalische Chemie, 136, 259–278.

    Article  Google Scholar 

  • Sunagawa, I., Endo, Y., Daimon, N., & Tate, I. (1968). Nucleation, growth and polytypism of flour-phlogopite from the vapour phase. Journal of Crystal Growth, 3, 751–751.

    Article  Google Scholar 

  • Takeda, H., & Donnay, J. (1965). A standardized Japanese nomenclature for crystal forms. Mineralogical Journal, 4, 291–298.

    Article  Google Scholar 

  • Takeda, H., & Ross, M. (1975). Mica polytypism - dissimilarities in crystal-structure of coexisting 1M and 2M1 biotite. American Mineralogist, 60, 1030–1040.

    Google Scholar 

  • Takeda, H., & Ross, M. (1995). Mica polytypism: Identification and origin. American Mineralogist, 80, 715–724.

    Article  Google Scholar 

  • Tomisaka, T. (1958). On the chemical properties, optical properties and the structural types of some muscovites and phlogopites. Journal of the Mineralogical Society of Japan, 3, 710–721.

    Article  Google Scholar 

  • Tomisaka, T. (1962). Polytypes of the phlogopite-biotite series and their mutual relations. Journal of Mineralogy Petrology and Economic Geology, 47, 134–143.

    Google Scholar 

  • Vand, V., & Hanoka, J. I. (1967). Epitaxial theory of polytypism; observations on the growth of PbI2 crystals. Materials Research Bulletin, 2, 241–251.

    Article  Google Scholar 

  • Verma, A. R., & Krishna, P. (1966). Crystallography: Exploring Polytypism. (Book reviews: polymorphism and polytypism in crystals). Science, 154, 1316.

    Google Scholar 

  • Wang, Y. F., & Xu, H. F. (2006). Geochemical chaos: Periodic and nonperiodic growth of mixed-layer phyllosilicates. Geochimica Et Cosmochimica Acta, 70, 1995–2005.

    Article  Google Scholar 

  • Xu, H. F., & Veblen, D. R. (1995). Periodic and nonperiodic stacking in biotite from the Bingham Canyon porphyry copper deposit, Utah. Clays and Clay Minerals, 43, 159–173.

    Article  Google Scholar 

  • Xu, H. F., Shen, Z., Konishi, H., & Luo, G. (2014). Crystal structure of Guinier-Preston zones in orthopyroxene: Z-contrast imaging and ab inito study. American Mineralogist, 99, 2043–2048.

    Article  Google Scholar 

  • Xu, H. F., Shen, Z., & Konishi, H. (2015). Natural occurrence of monoclinic Fe3S4 nano-precipitates in pyrrhotite from the Sudbury ore deposit: A Z-contrast imaging and density functional theory study. Mineralogical Magazine, 79, 377–385.

    Article  Google Scholar 

  • Yoder, H. S., & Eugster, H. P. (1955). Synthetic and natural muscovites. Geochimica Et Cosmochimica Acta, 8, 225–284.

    Article  Google Scholar 

  • Zhukhlistov, A. P., Zvyagin, B. B., & Pavlishin, V. L. (1988). Biotite 4M with an inhomogeneous layer alternation. Zeitschrift fur Kristallographie, 185, 624.

    Google Scholar 

  • Zvyagin, B. B. (1987). Polytypism in contemporary crystallography. Soviet Physics Crystallography, 32, 394–399.

    Google Scholar 

  • Zvyagin, B. B. (1997). Modular analysis of crystal structures. EMU Notes in Mineralogy, 1, 345–372.

    Google Scholar 

Download references

Funding

This study was supported financially by the National Natural Science Foundation of China (Grant Nos. 41921003, 41825003, and 42072044), Youth Innovation Promotion Association CAS (Grant No. 2018387), the Department of Science and Technology of Guangdong Province (Grant No. 2017GC010128 and 2019TX05L169), and the Science and Technology Planning of Guangdong Province, China (2020B1212060055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingya Ma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5273 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Yang, Y., Ma, L. et al. The Composition and Growth Mechanism of Coexisting 4M2 and 4A8 Biotite Polytypes from Rhyolite of Long Valley Caldera, California. Clays Clay Miner. 70, 48–61 (2022). https://doi.org/10.1007/s42860-021-00168-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00168-z

Keywords

Navigation