Skip to main content
Log in

BGK source terms for out-of-equilibrium two-phase flow models

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A modified form of BGK source terms is proposed for modeling two-phase flows with thermodynamical disequilibrium. The novelty is that three independent time-scales allow to manage the return to the thermodynamical equilibrium while remaining in agreement with the second law of thermodynamics. This is achieved thanks to the definition of a “local-in-time” equilibrium state which tends toward the asymptotic equilibrium state when time increases. The thermodynamical paths of the system are then modified with respect to the classical BGK source terms used for two-phase flow modeling, and the relaxation process of the system toward the asymptotic equilibrium state can be defined with additional degrees of freedom. In a numerical point of view, both the classical and the modified BGK source terms have advantages. The choice between these two forms strongly depends on the numerical strategy used to perform simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. J. Multiph. Flows 12, 861–889 (1986)

    Article  Google Scholar 

  2. Barberon, T., Helluy, P.: Finite volume simulation of cavitating flows. Comput. Fluids 34(7), 832–858 (2005)

    Article  Google Scholar 

  3. Boukili, H., Hérard, J.M.: Relaxation and simulation of a barotropic three-phase flow model. ESAIM: Math. Model. Numer. Anal. 53(3), 1031–1059 (2019)

    Article  MathSciNet  Google Scholar 

  4. Boukili, H., Hérard, J.M.: Simulation and preliminary validation of a three-phase flow model with energy. Comput. Fluids 221, 104868 (2021)

    Article  MathSciNet  Google Scholar 

  5. Chiapolino, A., Boivin, P., Saurel, R.: A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows. Comput. Fluids 150, 31–45 (2017)

    Article  MathSciNet  Google Scholar 

  6. Coquel, F., Gallouët, T., Hérard, J.M., Seguin, N.: Closure laws for a two-fluid two-pressure model. C. R. Math. 334(10), 927–932 (2002)

    Article  MathSciNet  Google Scholar 

  7. Downar-Zapolski, P., Bilicki, Z., Bolle, L., Franco, J.: The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiph. Flow 22(3), 473–483 (1996)

    Article  Google Scholar 

  8. Faccanoni, G., Kokh, S., Allaire, G.: Modelling and simulation of liquid–vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM Math. Model. Numer. Anal. 46(5), 1029–1054 (2012)

    Article  MathSciNet  Google Scholar 

  9. Faccanoni, G., Mathis, H.: Admissible equations of state for immiscible and miscible mixtures. ESAIM Proc. Surv. 66, 1–21 (2019)

    Article  MathSciNet  Google Scholar 

  10. Faucher, E., Hérard, J.M., Barret, M., Toulemonde, C.: Computation of flashing flows in variable cross-section ducts. Int. J. Comput. Fluid Dyn. 13(3), 365–391 (2000)

    Article  MathSciNet  Google Scholar 

  11. Gavrilyuk, S., Saurel, R.: Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175(1), 326–360 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ghazi, H.: Modélisation d’écoulements compressibles avec transition de phase et prise en compte des états métastables. Ph.D. thesis, Université de Nantes (2018). https://tel.archives-ouvertes.fr/tel-01379453

  13. Ghazi, H., James, F., Mathis, H.: Vapour–liquid phase transition and metastability. ESAIM Proc. Surv. 66, 22–41 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ghazi, H., James, F., Mathis, H.: A nonisothermal thermodynamical model of liquid–vapor interaction with metastability. Discrete Contin. Dyn. Syst. B 26(5), 2371–2409 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Glimm, J., Saltz, D., Sharp, D.: Two-pressure two-phase flow. In: Advances in nonlinear partial differential equations and related areas: a volume in Honor of Professor Xiaqi Ding, pp. 124–148. World Scientific (1998)

  16. Hantke, M., Müller, S., Grabowsky, L.: News on Baer–Nunziato-type model at pressure equilibrium. Contin. Mech. Thermodyn. 33(3), 767–788 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. Helluy, P., Hurisse, O., Quibel, L.: Assessment of numerical schemes for complex two-phase flows with real equations of state. Comput. Fluids 196, 104347 (2020)

    Article  MathSciNet  Google Scholar 

  18. Hérard, J.M., Hurisse, O.: A fractional step method to compute a class of compressible gas–liquid flows. Comput. Fluids 55, 57–69 (2012)

    Article  MathSciNet  Google Scholar 

  19. Hurisse, O.: Numerical simulations of steady and unsteady two-phase flows using a homogeneous model. Comput. Fluids 152, 88–103 (2017)

    Article  MathSciNet  Google Scholar 

  20. Hurisse, O.: Various choices of source terms for a class of two-fluid two-velocity models. ESAIM Math. Model. Numer. Anal. 55(2), 357–380 (2020)

    Article  MathSciNet  Google Scholar 

  21. Hurisse, O., Quibel, L.: A homogeneous model for compressible three-phase flows involving heat and mass transfer. ESAIM Proc. Surv. 66, 81–108 (2019)

    Article  MathSciNet  Google Scholar 

  22. Hurisse, O., Quibel, L.: Simulations of liquid–vapor water flows with non-condensable gases on the basis of a two-fluid model. Appl. Math. Model. 99, 514–537 (2021)

    Article  MathSciNet  Google Scholar 

  23. Jin, H., Glimm, J., Sharp, D.: Compressible two-pressure two-phase flow models. Phys. Lett. A 353(6), 469–474 (2006)

    Article  ADS  Google Scholar 

  24. Jung, J.: Numerical simulations of two-fluid flow on multicores accelerator. Ph.D. thesis, Université de Strasbourg (2013). https://tel.archives-ouvertes.fr/tel-00876159

  25. Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13(10), 3002–3024 (2001)

    Article  ADS  Google Scholar 

  26. Liu, Y.: Contribution to the verification and the validation of an unsteady two-phase flow model. Ph.D. thesis, Aix-Marseille Université (2013). https://tel.archives-ouvertes.fr/tel-00864567

  27. Lochon, H.: Modélisation et simulation d’écoulements transitoires eau-vapeur en approche bifluide. Ph.D. thesis, Aix Marseille Université (2016). https://tel.archives-ouvertes.fr/tel-01379453/document

  28. Mathis, H.: A thermodynamically consistent model of a liquid–vapor fluid with a gas. ESAIM Math. Model. Numer. Anal. 53(1), 63–84 (2019)

    Article  MathSciNet  Google Scholar 

  29. Müller, S., Hantke, M., Richter, P.: Closure conditions for non-equilibrium multi-component models. Contin. Mech. Thermodyn. 28(4), 1157–1189 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Quibel, L.: Simulation of water-vapor two-phase flows with non-condensable gas. Ph.D. thesis, Université de Strasbourg (2020). https://tel.archives-ouvertes.fr/tel-02941486

  31. Stewart, B., Wendroff, B.: Two-phase flows: models and methods. J. Comput. Phys. 56(7), 363–409 (1984)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Hurisse.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: computation of the formulas of section 4.4

Appendix: computation of the formulas of section 4.4

We present here the detailed computations that allow to retrieve equations (35) and (36). It is first recalled that perfect gas EOS are considered in Sect. 4.4; hence, we have: \(P_k/T_k=\delta _k/\tau _k\), with \(\delta _k=(\gamma _k-1) C_{V,k}\) and \(1/T_k=C_{V,k}/e_k\). Moreover, mass fractions are assumed to be such that: \(y_1=\overline{y}_1\), so that definitions (34) lead to:

$$\begin{aligned} \overline{\alpha }_1=\frac{{y}_1 \delta _1}{{y}_1 \delta _1+{y}_2 \delta _2}= \quad \text {and} \quad \overline{z}_1=\frac{{y}_1 C_{v,1}}{{y}_1 C_{v,1}+{y}_2 C_{v,2}}. \end{aligned}$$
(67)

Thanks to the definitions of the mixture pressure and temperature (6) and to the definitions (4), we have:

$$\begin{aligned} \frac{P}{T}(\overline{\alpha }_1-{\alpha }_1)= & {} \left( \alpha _1 \frac{P_1}{T_1}+\alpha _2 \frac{P_2}{T_2}\right) \left( \frac{{y}_1 \delta _1}{{y}_1 \delta _1+{y}_2 \delta _2}-{\alpha }_1\right) ,\\= & {} \left( \alpha _1 \frac{\delta _1}{\tau _1}+\alpha _2 \frac{\delta _2}{\tau _2}\right) \left( \frac{{y}_1 \delta _1}{{y}_1 \delta _1+{y}_2 \delta _2}-{\alpha }_1 \right) , \\= & {} \frac{y_1 \delta _1+y_2 \delta _2}{\tau } \left( \frac{{y}_1 \delta _1}{{y}_1 \delta _1+{y}_2 \delta _2}-{\alpha }_1\right) \\= & {} \left( \alpha _2 \frac{{y}_1 \delta _1}{\tau }-\alpha _1 \frac{{y}_2 \delta _2}{\tau }\right) =\alpha _1 \alpha _2 \left( \frac{\delta _1}{\tau _1}-\frac{\delta _2}{\tau _2}\right) , \\= & {} \alpha _1 \alpha _2 \left( \frac{P_1}{T_1}-\frac{P_2}{T_2}\right) . \end{aligned}$$

Hence, we obtain the formula of Eq. (35). Equation (36) can be found using exactly the same computations with \((\overline{z}_1-z_1)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurisse, O. BGK source terms for out-of-equilibrium two-phase flow models. Continuum Mech. Thermodyn. 34, 721–737 (2022). https://doi.org/10.1007/s00161-022-01085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01085-9

Keywords

Navigation