Skip to main content
Log in

Two hours of heat stress induces MAP-kinase signaling and autophagasome accumulation in C2C12 myotubes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Short bouts of heat can induce a hormetic stress response, whereas prolonged or excessive exposure can elicit detrimental effects. We previously demonstrated an increase in autophagic signaling in C2C12 myotubes in response to 1 h of heat at 40 °C. In opposition, longer durations of heat exposure (e.g., 12 and 24 h) lead to an accumulation of autophagasomes and elevations in markers of cellular inflammation, oxidative stress, and apoptosis. Whether a longer, yet moderate, duration of 2 h of heat further enhances autophagic flux and attenuates stress and inflammatory signaling, or transitions the cell toward a dysregulation of autophagy is unclear. In this study, C2C12 myotubes were maintained at 37 °C or exposed to 40 °C (HT) for 2 h, and harvested immediately or following 2, 8, or 24 h of recovery. Two hours of HT immediately increased pAMPK (T172; p = 0.001), and subsequently increased pULK1 (S555) at 2 h of recovery (p = 0.028). LC3 II was increased at 8 h (p = 0.043) and 24 h (p = 0.015) of recovery, whereas p62 was elevated at 2 h (p = 0.002) and 8 h (p < 0.001) of recovery, but returned to baseline by 24 h. In Bafilomycin A1 treated cells, p62 was further increased immediately following HT (p = 0.041). There was also a significant elevation in p-p38 (Thr180/Try182), pJNK (Thr183/Tyr185), and pNFκB (Ser536). These findings suggest that as short as 2 h of heat exposure contributes to cell stress and accumulation of autophagasomes in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728–741.

    Article  CAS  PubMed  Google Scholar 

  2. Vainshtein, A., & Hood, D. A. (2016). The regulation of autophagy during exercise in skeletal muscle. Journal of Applied Physiology, 120(6), 664–673.

    Article  CAS  PubMed  Google Scholar 

  3. Masiero, E., et al. (2009). Autophagy is required to maintain muscle mass. Cell Metabolism, 10(6), 507–515.

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y. A., et al. (2013). Autophagic response to exercise training in skeletal muscle with age. Journal of Physiology and Biochemical, 69(4), 697–705.

    Article  CAS  Google Scholar 

  5. Summers, C. M., & Valentine, R. J. (2019). Acute heat exposure alters autophagy signaling in C2C12 myotubes. Frontiers in Physiology, 10, 1521.

    Article  PubMed  Google Scholar 

  6. Liu, C. T., & Brooks, G. A. (2012). Mild heat stress induces mitochondrial biogenesis in C2C12 myotubes. Journal of Applied Physiology, 112(3), 354–361.

    Article  CAS  PubMed  Google Scholar 

  7. Gupte, A. A., et al. (2009). Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes, 58(3), 567–578.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gupte, A. A., et al. (2011). Acute heat treatment improves insulin-stimulated glucose uptake in aged skeletal muscle. Journal of Applied Physiology, 110(2), 451–457.

    Article  CAS  PubMed  Google Scholar 

  9. Selsby, J. T., & Dodd, S. L. (2005). Heat treatment reduces oxidative stress and protects muscle mass during immobilization. Am J Physiol Regulatory Integrative and Comparative Physiology, 289(1), R134–R139.

    Article  CAS  Google Scholar 

  10. Selsby, J. T., et al. (2007). Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. Journal of Applied Physiology, 102(4), 1702–1707.

    Article  CAS  PubMed  Google Scholar 

  11. Naito, H., et al. (2000). Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. Journal of Applied Physiology, 88(1), 359–363.

    Article  CAS  PubMed  Google Scholar 

  12. Ganesan, S., et al. (2018). Short-term heat stress results in increased apoptotic signaling and autophagy in oxidative skeletal muscle in Sus scrofa. Journal of Thermal Biology, 72, 73–80.

    Article  CAS  PubMed  Google Scholar 

  13. Ganesan, S., et al. (2016). Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle. American Journal of Physiology Regul Integr Comp Physiol, 310(11), R1288–R1296.

    Article  Google Scholar 

  14. Montilla, S. I., et al. (2014). Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle. Temperature, 1(1), 42–50.

    Article  Google Scholar 

  15. Ganesan, S., et al. (2017). Short-term heat stress causes altered intracellular signaling in oxidative skeletal muscle. Journal of Animal Science, 95(6), 2438–2451.

    CAS  PubMed  Google Scholar 

  16. Brownstein, A. J., et al. (2017) Heat stress causes dysfunctional autophagy in oxidative skeletal muscle. Physiological Reports, 5(12), e13317.

  17. Russell, R. C., et al. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biology, 15(7), 741–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ganesan, S., et al. (2018). Short-term heat stress results in increased apoptotic signaling and autophagy in oxidative skeletal muscle in Sus scrofa. Journal of Thermal Biology, 72, 73–80.

    Article  CAS  PubMed  Google Scholar 

  19. Ganesan, S., et al. (2018). Prolonged environment-induced hyperthermia alters autophagy in oxidative skeletal muscle in Sus scrofa. Journal of Thermal Biology, 74, 160–169.

    Article  CAS  PubMed  Google Scholar 

  20. Neel, B. A., Lin, Y., & Pessin, J. E. (2013). Skeletal muscle autophagy: a new metabolic regulator. Trends in Endocrinology and Metabolism, 24(12), 635–643.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, J., et al. (2019). Targeting autophagy enhances heat stress-induced apoptosis via the ATP-AMPK-mTOR axis for hepatocellular carcinoma. International Journal of Hyperthermia, 36(1), 498–509.

    Article  CAS  Google Scholar 

  22. McCormick, J. J., et al. (2020). Regulation of autophagy following ex vivo heating in peripheral blood mononuclear cells from young adults. Journal of Thermal Biology, 91, 102643.

    Article  CAS  PubMed  Google Scholar 

  23. Kumsta, C., et al. (2017). Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nature Communications, 8(1), 14337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klionsky, D. J., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition. Autophagy, 12(1), 1–222.

  25. Rubinsztein, D. C., et al. (2009). In search of an “autophagomometer”. Autophagy, 5(5), 585–589.

    Article  CAS  PubMed  Google Scholar 

  26. Volodina, O., et al. (2017) Short-term heat stress alters redox balance in porcine skeletal muscle. Physiological Reports, 5(8), e13267.

  27. Webber, J. L. (2010). Regulation of autophagy by p38alpha MAPK. Autophagy, 6(2), 292–293.

    Article  CAS  PubMed  Google Scholar 

  28. Slobodnyuk, K., et al. (2019). Autophagy-induced senescence is regulated by p38alpha signaling. Cell Death and Disease, 10(6), 376.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schnoder, L., et al. (2016). Deficiency of neuronal p38alpha MAPK Attenuates Amyloid Pathology in Alzheimer Disease Mouse and Cell Models through Facilitating Lysosomal Degradation of BACE1. Journal of Biology Chemistry, 291(5), 2067–2079.

    Article  CAS  Google Scholar 

  30. Guo, F., et al. (2017). A central role for phosphorylated p38alpha in linking proteasome inhibition-induced apoptosis and autophagy. Molecular Neurobiology, 54(10), 7597–7609.

    Article  CAS  PubMed  Google Scholar 

  31. Sui, X., et al. (2014). p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Letters, 344(2), 174–179.

    Article  CAS  PubMed  Google Scholar 

  32. Ganesan, S., et al. (2017). Acute heat stress activated inflammatory signaling in porcine oxidative skeletal muscle. Physiological Reports, 5(16), e13397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zevian, S. C., & Yanowitz, J. L. (2014). Methodological considerations for heat shock of the nematode Caenorhabditis elegans. Methods, 68(3), 450–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dokladny, K., Myers, O. B., & Moseley, P. L. (2015). Heat shock response and autophagy—cooperation and control. Autophagy, 11(2), 200–213.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McCormick, J. J., et al. (2021). Impaired autophagy following ex vivo heating at physiologically relevant temperatures in peripheral blood mononuclear cells from elderly adults. Journal of Thermal Biology, 95, 102790.

    Article  CAS  PubMed  Google Scholar 

  36. Brooks, G. A., et al. (1971). Tissue temperatures and whole-animal oxygen consumption after exercise. American Journal of Physiology, 221(2), 427–431.

    Article  CAS  Google Scholar 

  37. Saltin, B., Gagge, A. P., & Stolwijk, J. A. (1968). Muscle temperature during submaximal exercise in man. Journal of Applied Physiology, 25(6), 679–688.

    Article  CAS  PubMed  Google Scholar 

  38. Metzger, K., et al. (2021). Effects of temperature on proliferation of myoblasts from donor piglets with different thermoregulatory maturities. BMC Molecular and Cell Biology, 22(1), 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shima, A., & Matsuda, R. (2008). The expression of myogenin, but not of MyoD, is temperature-sensitive in mouse skeletal muscle cells. Zoological Science, 25(11), 1066–1074.

    Article  CAS  PubMed  Google Scholar 

  40. Powers, S. K., Howley, E. T., & Cox, R. (1982). A differential catecholamine response during prolonged exercise and passive heating. Medicine and Science in Sports and Exercise, 14(6), 435–439.

    Article  CAS  PubMed  Google Scholar 

  41. Welc, S. S., et al. (2013). Heat stroke activates a stress-induced cytokine response in skeletal muscle. Journal of Applied Physiology, 115(8), 1126–1137.

    Article  CAS  PubMed  Google Scholar 

  42. Welc, S. S., et al. (2012). Hyperthermia increases interleukin-6 in mouse skeletal muscle. American journal of physiology. Cell Physiology, 303(4), C455–C466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. King, M. A., et al. (2017). Unique cytokine and chemokine responses to exertional heat stroke in mice. Journal of Applied Physiology, 122(2), 296–306.

    Article  CAS  PubMed  Google Scholar 

  44. Hall, D. M., et al. (2001). Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol, 280(2), H509–H521.

    Article  CAS  PubMed  Google Scholar 

  45. Pearce, S. C., et al. (2014). Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. Journal of Animal Science, 92(12), 5444–5454.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.M.S.: Conceived and designed the study, performed experiments, analyzed data, drafted and edited the manuscript. R.J.V.: Conceived and designed the study, performed experiments, analyzed data, edited the manuscript.

Corresponding author

Correspondence to Rudy J. Valentine.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Summers, C.M., Valentine, R.J. Two hours of heat stress induces MAP-kinase signaling and autophagasome accumulation in C2C12 myotubes. Cell Biochem Biophys 80, 367–373 (2022). https://doi.org/10.1007/s12013-021-01054-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01054-0

Keywords

Navigation