Skip to main content

Advertisement

Log in

Protracted formation of nodular cherts in marine platform: new insights from the Middle Permian Chihsian carbonate successions, South China

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Widespread distribution of chert nodules in the Chihsian Formation, South China, provides insightful clues for Middle Permian paleoceanography, while the occurrence of these cherts is enigmatic. In this study, micro-area and in situ geochemical analyses were conducted on cherts and carbonates from the eastern Pingdingshan outcrop, aiming to decipher the origin and forming of chert nodules. Silicon isotope (δ30Si) and petrologic results showed that nodular cherts were formed at syn-depositional stage and had allochthonous origin. Isotopic signatures (δ30Si, δ18O, and 87Sr/86Sr), trace (Fe, Mn, Cu, Co, Ni, etc.) and rare-earth elements indicated that chert cores originated from deep-marine organisms influenced by volcanic activities. By contrast, chert rinds were formed from dissolved silica transported by deep-marine hydrothermal fluids (mixture of seawater and submarine magmatic fluids). The assemblage of spots and veins occurring in chert nodules were formed due to hierarchical precipitation of saddle dolomites and fine-sized quartz. Silica has been transported by hydrothermal fluids from deep marine to platform. Consequently, a protracted forming pattern was proposed to clarify quartz origins, evolution of transporting fluids, and occurrence of chert cores and rinds. This study provides a new perspective with regard to chert origin and formation in marine carbonate successions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adachi M, Yamamoto K, Sugisaki R (1986) Hydrothermal chert and associated siliceous rocks from the northern Pacific: their geological significance as indication of ocean ridge activity. Sed Geol 47:125–148

    Article  Google Scholar 

  • Alibo DS, Nozaki Y (1999) Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta 63(3–4):363–372

    Article  Google Scholar 

  • Azmy K, Veizer J, Misi A, Oliveira TFD, Sanches AL, Dardenne MA (2001) Dolomitization and isotope stratigraphy of the Vazante formation, Sao Francisco basin. Braz Precambr Res 112(3–4):303–329

    Article  Google Scholar 

  • Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93(3–4):219–230

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal supergroup, South Africa. Precambr Res 79(1–2):37–55

    Article  Google Scholar 

  • Beauchamp B, Baud A (2002) Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation. Palaeogeogr Palaeoclimatol Palaeoecol 184:37–63

    Article  Google Scholar 

  • Benoit B, Stephen EG (2012) Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr Palaeoclimatol Palaeoecol 350–352:73–90

    Google Scholar 

  • Bjørlykke K, Mo A, Palm E (1988) Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Mar Pet Geol 5(4):338–351

    Article  Google Scholar 

  • Brand U, Veizer J (1980) Chemical diagenesis of multicomponent carbonate system-1: trace elements. J Sedim Petrol 50:1219–1236

    Google Scholar 

  • Calça CP, Fairchild TR, Cavalazzi B, Hachiro J, Petri S, Huila MFG, Toma HE, Araki K (2016) Dolomitized cells within chert of the Permian Assistência Formation, Paraná Basin, Brazil. Sed Geol 335:120–135

    Article  Google Scholar 

  • Chakrabarti R, Knoll AH, Jacobsen SB, Fischer WW (2012) Si isotope variability in Proterozoic cherts. Geochim Cosmochim Acta 91:187–201

    Article  Google Scholar 

  • Chen Y, Jiang S, Zhou X, Yang W, Han L (2010) δ30Si, δ180 and elements geochemistry on the bedded siliceous rocks and cherts in dolostones from Cambrian strata, Tarim Basin. Geochimica 39(2):159–170

    Google Scholar 

  • Clayton RN, O’Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3067

    Article  Google Scholar 

  • Dickson JAD (1965) A modified staining technique for carbonates in thin section. Nature 205(4971):587–587

    Article  Google Scholar 

  • Ding T, Wan D, Li J, Jiang S, Song H, Li Y, Liu Z (1988) The analytic method of silicon isotopes and its geological application. Miner Deposits 7(4):90–96

    Google Scholar 

  • Ding T, Jiang S, Wan D, Li Y, Li J, Song H, Liu Z, Yao X (1996) Silicon isotope geochemistry. Geological Publishing House, Beijing, China

    Google Scholar 

  • Ding T, Wan D, Wang C, Zhang F (2004) Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim Cosmochim Acta 68(2):205–216

    Article  Google Scholar 

  • Ding T, Tian S, Gao J (2007) Silicon isotope compositions of the underground water, limestone and soil from karst caves in Guilin city, Guangxi, China. Geochim Cosmochim Acta 71(15S):A225

    Google Scholar 

  • Dong S, Chen D, Zhou X, Qian Y, Tian M, Qing H (2016) Tectonically-driven dolomitization of Cambrian to Lower Ordovician carbonates of the Quruqtagh area, north-eastern flank of Tarim Basin, North-West China. Sedimentology 64(4):1079–1106

    Article  Google Scholar 

  • Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46(8):1449–1458

    Article  Google Scholar 

  • Feng Z, Yang Y, Jin Z (1997) Permian paleogeography of southern China. Petroleum University Press, Beijing, pp 1–242

    Google Scholar 

  • Gao G, Land LS (2006) Nodular chert from the Arbuckle Group, Slick Hills, SW Oklahoma: a combined field, petrographic and isotopic study. Sedimentology 38(5):857–870

    Article  Google Scholar 

  • Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70(6):1439–1456

    Article  Google Scholar 

  • Gromet LP, Haskin LA, Korotev RL, Dymek RF (1985) The “north American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48(12):2469–2482

    Article  Google Scholar 

  • Hecht L, Freiberger R, Gilg HA, Grundmann G, Kostitsyn YA (1999) Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany). Chem Geol 155(1–2):115–130

    Article  Google Scholar 

  • Hu G, Fang C, Wan D, Li Y, Chen S (2013) Geochemistry of bedded cherts in Three Gorges Region, Hubei Province, and its paleoenvironmental implications. Acta Geol Sinica 87(9):1469–1476

    Google Scholar 

  • Huang S, Qing H, Huang P, Hu Z, Wang Q, Zou M (2008) Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China. Sci China Earth Sci 51(4):528–539

    Article  Google Scholar 

  • Hussein AW, Abd E, Yasser M (2020) Origin of chert within the Turonian carbonates of Abu Roash Formation, Abu Roash area, Egypt: Field, petrographic, and geochemical perspectives. Geol J 55(4):2805–2833

    Article  Google Scholar 

  • Kametaka M, Takebe M, Nagai H, Zhu S, Takayanagi Y (2005) Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: a continental shelf radiolarian chert. Chem Geol 174:197–222

    Google Scholar 

  • Kawabe I, Toriumi T, Ohta A, Miura N (1998) Monoisotopic REE abundances in seawater and the origin of seawater tetrad effect. Geochem J 32(4):213–229

    Article  Google Scholar 

  • Knauth LP (1979) A model for the origin of chert in limestone. Geology 7(6):274–277

    Article  Google Scholar 

  • Krauskopf KB (1956) Dissolution and precipitation of silica at low temperatures. Geochim Cosmochim Acta 10(1–2):1–26

    Google Scholar 

  • Liao Z, Hu W, Cao J, Wang X, Hu Z (2019) Petrologic and geochemical evidence for the formation of organic-rich siliceous rocks of the Late Permian Dalong Formation, Lower Yangtze region, southern China. Mar Pet Geol 103:41–54

    Article  Google Scholar 

  • Liu X, Yan J (2007) Nodular chert of the Permian Chihsia Formation from South China and its geological implications. Acta Sedimentol Sin 25(5):730–737

    Google Scholar 

  • Liu F, Cai J, Lyu B, Xu J (2011) Formation and influencing factors of carbonate source rock of the Lower Permian Chihsia Formation in Chaohu region, Anhui province. Science China (earth Sci) 12:129–142

    Google Scholar 

  • Liu C, Xie Q, Wang G, Song Y, Qi K (2016) Dolomite origin and its implication for porosity development of the carbonate gas reservoirs in the Upper Permian Changxing Formation of the eastern Sichuan Basin, Southwest China. J Nat Gas Sci Eng 35:775–797

    Article  Google Scholar 

  • Liu C, Xie Q, Wang G, He W, Song Y, Tang Y, Wang Y (2017) Rare earth element characteristics of the Carboniferous Huanglong formation dolomites in eastern Sichuan Basin, southwest China: implications for origins of dolomitizing and diagenetic fluids. Mar Pet Geol 81:33–49

    Article  Google Scholar 

  • Lu X, Sun L, Chen S (2010) Bioclast quantity and its geological significance in Permian Chihsia Formation, Chaohu City. Coal Geol China 22(7):7–11

    Google Scholar 

  • Ma X, Chen S (2016) Silicalite origin of the Chihsia Formation, Chaohu area. Technol Innov Appl 29:4–6

    Google Scholar 

  • Machel HG (2004) Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite CJR, Rizzi G, Drake G (eds) The geometry and petrogenesis of dolomite hydrocarbon reservoirs, vol 235. Geological Society. Special Publication, London, pp 7–63

    Google Scholar 

  • Marin-Carbonne J, Robert F, Chaussidon M (2014) The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures? Precambr Res 247:223–234

    Article  Google Scholar 

  • Michard A (1989) Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta 53(3):745–750

    Article  Google Scholar 

  • Murchey BL, Jones DL (1992) A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins. Palaeogeogr Palaeoclimatol Palaeoecol 96(1):161–174

    Article  Google Scholar 

  • Murray RW (1994) Chemical criteria to identify the depositional environment of chert: general principles and applications. Sed Geol 90(3–4):213–232

    Article  Google Scholar 

  • Murray RW, Brink MRBT, Gerlach DC, Iii GPR, Jones DL (1991) Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta 55(7):1875–1895

    Article  Google Scholar 

  • Nothdurft LD, Webb GE, Kamber BS (2004) Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta 68(2):263–283

    Article  Google Scholar 

  • Parsapoor A, Khalili M, Mackizadeh MA (2009) The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran). J Asian Earth Sci 34(2):123–134

    Article  Google Scholar 

  • Raviolo MM, Barbosa JA, Neumann VH (2009) Characteristics, distribution and diagenetic stages of chert in the La Silla Formation (Lower Ordovician), Argentine Precordillera. An Acad Bras Ciênc 81(4):781–792

    Article  Google Scholar 

  • Rona PA (1988) Hydrothermal mineralization of ocean ridges. Can Mineral 26(3):447–465

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid-inclusion studies. Blackie, London

    Google Scholar 

  • Summer NS, Ayalon A (1995) Dike intrusion into unconsolidated sandstone and the development of quartzite contact zones. J Struct Geol 17(17):997–1010

    Article  Google Scholar 

  • Tepe N, Bau M (2016) Behavior of rare earth elements and yttrium during simulation of arctic estuarine mixing between glacial-fed river waters and seawater and the impact of inorganic (nano-)particles. Chem Geol 438:134–145

    Article  Google Scholar 

  • Tong J, Zakharov YD, Orchard MJ, Yin H, Hansen HJ (2003) A candidate of the Induan-Olenekian boundary stratotype in the Tethyan region, China. Science Ser D 46(11):1182–1200

    Google Scholar 

  • Umeda M (2003) Precipitation of silica and formation of chert–mudstone–peat association in Miocene coastal environments at the opening of the Sea of Japan. Chem Geol 161:249–268

    Google Scholar 

  • Vahrenkamp VC, Swart PK (1990) New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology 18(5):387–391

    Article  Google Scholar 

  • van den Boorn SHJM, Bergen MJV, Vroon PZ, Vries STD, Nijman W (2010) Silicon isotope and trace element constraints on the origin of ~3.5 Ga cherts: implications for early Archaean marine environments. Geochim Cosmochim Acta 74(3):1077–1103

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen K, Buhl D, Bruhn F (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161(30):59–88

    Article  Google Scholar 

  • Wallmann K (2001) The geological water cycle and the evolution of marine δ18O values. Geochim Cosmochim Acta 65:2469–2485

    Article  Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64(9):1557–1565

    Article  Google Scholar 

  • Webb GE, Nothdurft LD, Kamber BS, Kloprogge JT, Zhao JX (2009) Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite. Sedimentology 56(5):1433–1463

    Article  Google Scholar 

  • Wusiman J, Zhou Y, Yao X, Xu H, Fang X (2017) Geochemical characteristics comparison and tectonic background analysis of siliceous rocks from Qixia Formation and Gufeng Formation of Permian in Chaohu Area, Anhui province. Geoscience 31(4):734–745

    Google Scholar 

  • Yan J (2004) Origin of Permian Chihsian carbonates from south China and its geological implications. Acta Sedimentol Sin 22(4):579–587

    Google Scholar 

  • Yang R, Li H, Liu Y, Lei C, Lei Y, Feng S (2014) Origin of nodular cherts in limestones in Middle Permian Qixia Formation, Chaohu, Anhui Province. Geoscience 28(3):501–511

    Google Scholar 

  • Yao X, Ding T (1994) Silicon and oxygen stable isotope studies on the siliceous rocks and stratiform ore bodies of the Dachang Tin polymetallic deposit, Guangxi. Acta Geosci Sin 1–2:124–130

    Google Scholar 

Download references

Acknowledgements

This study is jointly supported by National Natural Science Foundation of China (Grant number: 42002159), the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (No. PRP/open-2103), Natural Science Foundation of Shaanxi Province (Grant number: 2019JQ-234), and Open Funding Projects of Key Laboratory of Sedimentary Basin and Oil and Gas Resources, Ministry of Land and Resources, China (Grant number: cdcgs2018004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ma, J., Zhang, L. et al. Protracted formation of nodular cherts in marine platform: new insights from the Middle Permian Chihsian carbonate successions, South China. Carbonates Evaporites 37, 15 (2022). https://doi.org/10.1007/s13146-022-00757-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-022-00757-6

Keywords

Navigation