Skip to main content
Log in

Implicating the Origin and Depositional Environment of Banded Iron Formation (BIF) of Bonai-Keonjhar Iron Ore Belt in Eastern India from its Petrography and Geochemistry

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The iron formation of Bonai-Keonjhar belt, Keonjhar district of Odisha comprises a promising horizon of Banded Iron Formation (BIF) which is situated in the western flank of North Odisha Iron Ore Craton (NOIC). In this investigation, major, trace and REE chemistry of the Banded Iron Formation of the area are utilized to interpret the source of metals and to explain the origin and depositional environment of the BIF. Petrographic study indicates that the BIF belongs to the oxide facies iron formation consisting mainly of iron oxide (hematite) mesobands arranged alternating with silica/quartz mesobands. Bedded layers, banding structures of quartz and hematite along with their diagenetic growth indicate a sedimentary depositional milieu for BIF. The geochemical analysis data reveal that the BIF is mainly composed of Fe2O3 and SiO2, which constitute more than 97% of the bulk composition. Low concentration of Al2O3, TiO2 and trace HFSEs (high field strength elements) showing that BIFs are relatively detritus free chemical sediments. The chondrite normalized REE pattern display positive Eu and negative Ce anomalies which suggest the source of Fe and silica was the result of deep ocean hydrothermal activity admixture with seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Acharya, S., Stratigraphy and structural evolution of the rocks of Iron Ore Basin in Singhbhum-Odisha Iron Ore Province, Crustal Evolution of the Indian shield and its bearing on Metallogeny, Ind. J. Earth Sci. 1984, vol. Seminar, pp. 19–28. http://www.sciepub.com/reference/155720.

  2. Acharya, S., Greenstones from Singhbhum, their Archean Character, Oceanic Crust Affinity and Tectonics, Proc. Nat. Acad. Sci. India, 1993, vol. A63, pp. 211–222. https://link.springer.com/article/10.1007/s12594-015-0191-x.

    Google Scholar 

  3. Acharya, S., Some observations on parts of the Banded Iron-Formations of Eastern India, Pres. Adress, 87th session, Indian Science Congress, 2000, pp. 1–34. http://www.sciepub.com/reference/155724.

    Google Scholar 

  4. Acharya, S., Genetic modelling of iron and manganese ore deposits of the Joda-Koira Iron Ore basin (F1-F3), India-Its application to explorations, Proc. Vol. Int. Sem., Vision Mineral Development, 2020, SGAT, pp. 44–67. http://www.sciepub.com/JGG/abstract/3161.

    Google Scholar 

  5. Alexander, B. W., Bau, M., Andersson, P., and Dulski, P., Continentally-derived solutes in shallow Archean sea water: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 378–394. https://doi.org/10.1016/j.gca.2007.10.028

    Article  Google Scholar 

  6. Appel, P., Rare earth elements in the early ArcheanIsua iron-formation, W.Greenland, J. Precambrian Geol., 1983, vol. 20, pp. 243–258. http://appelglobal.com/references-2/west-greenland.

    Article  Google Scholar 

  7. Banerji, A. K., On the Precambrian banded iron formation and manganese ores of Singhbhum region, Eastern India, Econ. Geol., 1977, vol. 72, pp. 90–98. https://doi.org/10.2113/gsecongeo.72.1.90

    Article  Google Scholar 

  8. Basta, F. F., Maurice, A. E., Fontbote, L. & Favarger, P., Petrology and geochemistry of banded iron formation (BIF) of WadiKarim and Um Anab, Eastern Desert, Egypt: implications for the origin of Neoproterozoic BIF, Precambrian Res., 2011, vol. 187, pp. 277–292. https://doi.org/10.1016/j.precamres.2011.03.011

    Article  Google Scholar 

  9. Bau, M. and Dulski, P., Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa, Precambrian Res., 1996, vol. 79, pp. 37–55. https://doi.org/10.1016/0301-9268(95)00087-9

    Article  Google Scholar 

  10. Bau, M. and Dulski, P., Comparing yttrium and rare earths in hydrothermal fluids from Mid-Atlantic Ridge; implications for Y and REE behaviour during near vent mixing and for the Y/Ho ratio of Proterozoic seawater, Chem. Geol., 1999, vol. 155, pp. 77–90. https://doi.org/10.1016/S0009-2541(98)00142-9

    Article  Google Scholar 

  11. Beura, D. & Singh, P. P., Tectonically hypotheticated genetic model of Precambrian iron deposits of Badampahar-Gorumahisani-Suleipat belt, Odisha, India. Sem: Iron ores-Genesis and Exploration Techniques. SGAT, Bhubaneswar, Odisha, 2008, pp. 32–40. https://www.researchgate.net/publication/303370540_Field_Relationship_among_the_Three_Iron_Ore_Groups_of_Iron_Ore_Super_Group_Encircling_ the_North_Odisha_Iron_Ore_Craton_India_A_Comparison_Study.

    Google Scholar 

  12. Beura, D. and Sathpathy, B., Petrographic characterization of banded iron formation of Bonai-Keonjhar Belt with special reference to Banspani–Jhilling–Jajang sector Odisha, Int. J. Earth Sci. Eng., 2012, vol. 5, no. 4, pp. 767–774. https://www.researchgate.net/publication/287600646_Pet-rographic_characterisation_of_Banded_Iron_Formation_ of_Bonai-Keonjhar_belt_with_special_reference_to_Ban-spani-Jilling-Jajang_sector_Odisha

  13. Beura, D., et al., Field Relationship among the three iron ore groups of iron ore super group encircling the North Odisha iron ore craton, India: a comparison study, J. Geosci. Geomat., 2016, vol. 4, no. 3, pp. 53–60. https://doi.org/10.12691/jgg-4-3-2

    Article  Google Scholar 

  14. Bhattacharya, H.N., Chakaraborty, I., and Ghosh, K.K., Geochemistry of some banded iron-formations of the Archean supracrustals, Jharkhand–Orissa region, India, J. Earth System Sci., 2007, vol. 3, pp. 245-259. https://doi.org/10.1007/S12040-007-0024-4

    Article  Google Scholar 

  15. Bolhar, R., Kamber, B. S., and Moorbath, S., Characterization of Early Archean chemical sediments by trace element signatures, Earth Planet. Sci. Lett., 2004,vol. 222, pp. 43–60. https://doi.org/10.1016/j.epsl.2004.02.016

    Article  Google Scholar 

  16. Bonatti, E., Metallogenesis at oceanic spreading centers, Annu.Rev.Earth Planet.Sci., 1975, vol. 3, pp. 401–433. www.annualreviews.org/doi/abs/10.1146/annurev.ea.03.050-175.002153.

    Article  Google Scholar 

  17. Campbell, A.C., Palmer, M. R., Klinkhammer, G. P., Bowers, T. S., Edmond, J. M., Lawrence, J. R., Casey, J. F., Thompson, G., Humphris, S., Rona, P., and Karson, J. A., Chemistry of hot springs on the Mid-Atlantic Ridge, Nature, 1988, vol. 335, pp. 514–519. https://doi.org/10.1038/335514a0

    Article  Google Scholar 

  18. Cloud, P., A working model for the primitive Earth, Am. J. Sci., 1972, vol. 272, pp. 537–548. https://doi.org/10.2475/ajs.272.6.537

    Article  Google Scholar 

  19. Cloud, P., Paleoecological significance of the banded iron formation, Econ. Geol., 1973, vol. 68, no. 7, pp. 1135–1143.

    Article  Google Scholar 

  20. De Baar, H.W., Bacon, M.P., and Brewer, P.G., Rare earth elements in the Pacific and Atlantic Oceans, Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 1943–1959. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.966.7181& rep=rep1&type=pdf.

    Article  Google Scholar 

  21. Douville, E., Bienvenu, P., Charlou, J. L., Donval, J. P., Fouquet, Y., Appriou, P., and Gamo, T., Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems, Geochem. Cosmochim. Acta, 1999, vol. 63, no. 5, pp. 627–643. https://doi.org/10.1016/S0016-7037%2899%2900024-1

    Article  Google Scholar 

  22. Dymek, R. F. and Klein, C., Chemistry, petrology and origin of banded iron formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland, Precambrian Res., 1988, vol. 39, pp. 247–302. https://doi.org/10.1016/0301-9268(88)90022-8

    Article  Google Scholar 

  23. Frei, R., Dahl, P. S., Duke, E. F., Frei, K. M., Hansen, T. R., Frandsson, M. M., and Jensen, L. A., Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formations in the black Hills (South Dakota USA): assessment of chemical change during 2.9–1.9 Ga deposition bracketing the 2.4–2.2 Ga first rise of atmosphere oxygen, Precambrian Res., 2008, vol. 162, no. 3–4, pp. 441–474. https://doi.org/10.2113/gsecongeo.76.7.1954

    Article  Google Scholar 

  24. Fryer, B.J., Rare earth evidence in iron formations for changing Precambrian oxidation states, Geochim. Cosmochim. Acta, 1977, vol. 41, pp. 361–367. https://doi.org/10.1016/S0166-2635(08)70048-3

    Article  Google Scholar 

  25. Gole, M.N., Archean banded iron-formation, Yilgarn Block, Western Australia, Econom. Geol., 1981, vol. 76, no. 7, pp.1954–1974. https://doi.org/10.1016/j.precamres.2007.10.005

    Article  Google Scholar 

  26. Govett, G., Origin of banded iron-formation, Geol. Soc. Am., 1966, vol. 77, pp. 1191–1212. https://doi.org/10.1130/0016-7606(1966)77

  27. Gross, G.A., A classification of iron formations based on depositional environments, Can. Mineral., 1980, vol. 18, no. 2, 215–222. https://pubs.geoscienceworld.org/canmin/article-abstract/18/2/215/11427/A-classification-of-iron-formations-based-on?redirectedFrom=PDF.

    Google Scholar 

  28. Gross, G.A., Iron-formation in fold belts marginal to the Ungava craton, Iron Formation: Facts and Problems, A. F. Trendall and R. C. Morris, Eds., Elsevier: Amsterdam, 1983, pp. 253–294. https://doi.org/10.1016/S0166-2635(08)70045-8

  29. Gross, G.A. and McLeod, C.R., A preliminary assessment of the chemical composition of iron formations in Canada, Can. Mineral., 1980, vol. 18, pp. 223–230. https://pubs. geoscienceworld.org/canmin/article-abstract/18/2/223/11-428/a-preliminary-assessment-of-the-chemical.

    Google Scholar 

  30. Hein, J.R., Schulz, M.S., and Kang, J.K., Insular and submarine ferromanganese mineralization of the Tongap-Lau region, Mar. Min., 1990, vol. 9, pp. 305–354. https://pubs.er.usgs.gov/publication/70015946.

    Google Scholar 

  31. Henderson, P., General Chemical Properties and Abundance of the Rare Earth Elements. Rare Earth Element Geochemistry Development in Geochemistry, 1984. www.elsevier.com/books/rare-earth-element-geochemistry/henderson/978-0-444-42148-7.

  32. Hofmann, A., The geochemistry of sedimentary rocks from the Fig Tree Group, Bsarberton green stone belt: implication for tectonic, hydrothermal and surface process during mid-Archean times, Precambrian Res., 2005, vol.143, nos. 1–4, pp. 23–49. https://doi.org/10.1016/j.precamres.2005.09.005

    Article  Google Scholar 

  33. Holland, H. D., The Chemical Evolution of the Atmosphere and Oceans, Princeton: University, New Jersey, 1984.

  34. James, H. L., Sedimentary facies of iron formations, Econ. Geol., 1954, vol. 49, p. 235-253. https://doi.org/10.2113/gsecongeo.49.3.235

    Article  Google Scholar 

  35. James, H. L., Distribution of banded iron formation in space and time, In: Iron-Formation: Facts and Problems, Trendall, A.F., and Morris, R.C., Eds., Almsterdam: Elsevier, 1983, pp. 471–490. https://doi.org/10.1016/S0166-2635(08)70053-7.

  36. James, H. L., Chemistry of the iron rich sedimentary rocks, Data of Geochemistry, 6th Ed., Fleischer, M., Ed., Washington D.C.: U.S. Govt. Printing Office, 1996, paper 440-w. https://pubs.er.usgs.gov/publication/pp440W.

  37. JCPDS, selected powder diffraction data for minerals, in: Joint Committee on Powder Diffraction Standards, 1st Ed., berry, L.G. Eds., Philadelphia, 1974.

  38. Jones, H. C., The iron ore deposits of Bihar and Orissa, Mem. Geol. Surv. India, 1934, vol. 63, pp. 357. http://www.sciepub.com/reference/155744

    Google Scholar 

  39. Kato, Y., Ohta, I., Tsunematsu, T., Watanabe, Y., Isozaki, Y., Maruyama, S., and Imai, N., Rare earth element variations in mid-Archean banded iron formations: Implications for the chemistry of ocean and continent plate tectonics, Geochim. Cosmochiim. Acta, 1998, vol. 62, pp. 3475—3497. https://doi.org/10.1016/S0016-7037(98)00253-1

    Article  Google Scholar 

  40. Kato, Y., Yamaguchi, K. E., and Ohmato, H., Rare earth elements in Precambrian banded iron formations: Secular changes of Ce and Eu anomalies and evolution of atmospheric oxygen, Geol. Soc. Am. Mem., 2006, vol. 198, pp. 269–288. https://doi.org/10.1130/2006.1198(16)

    Article  Google Scholar 

  41. Klein, C., Some Precambrian banded iron-formations (BIFs) from around the world: their age, geological setting, mineralogy, metamorphism, geochemistry and origins, Am. Mineral., 2005, vol. 90, no. 4, pp. 1473-1499. https://doi.org/10.2138/am.2005.1871

    Article  Google Scholar 

  42. Klein, C. and Beukes, N.J., Geochemistry and sedimentology of a facies transition from limestone to iron formation deposition in the early Proterozoic Transvaal Supergroup, South Africa, Econ. Geol., 1989, vol. 84, pp. 1733–1774. https://doi.org/10.1016/0301-9268(90)90033-M

    Article  Google Scholar 

  43. Konhauser, K.O., Pecoits, E., Lalonde, S. V., Papineau, D., Nisbet, E. G., Barley, M. E., Arndt, N.T., Zahnle, K., and Kamber, B. S., Oceanic nickel depletion and methanogen famine before the Great Oxidation Event, Nature, 2009, vol. 458, pp. 750–754. https://doi.org/10.1038/nature07858

    Article  Google Scholar 

  44. Lepp, H. and Goldich, S., Origin of the Precambrian iron formation, Econ. Geol., 1964, vol. 69, pp. 1025–1060. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 1033.3237&rep=rep1&type=pdf.

    Article  Google Scholar 

  45. Majumder, T., Chakraborty, K. L., and Bhattacharya, A., Geochemistry of banded iron formation of Orissa, India, Mineral. Deposita, 1982, vol. 17, pp. 107–118. https://doi.org/10.1007/BF00206379

    Article  Google Scholar 

  46. McLennan, S. M. and Taylor, S. R., Sedimentary rocks and crustal evolution: tectonic setting and secular trends, J. Geol., 1991, vol. 99, pp. 1–21. https://doi.org/10.1086/629470

    Article  Google Scholar 

  47. Melnik, J. P., Precambrian Banded Iron-Formation, Physciochemical Conditions of Formation, Amsterdam:Elsever, 1982. www.sciencedirect.com/bookseries/developments-in-precambrian-geology/vol/5/suppl/C.

    Google Scholar 

  48. Michard, A. and Albarede, F., The REE content of some hydrothermal fluids, Chem. Geol., 1986, vol. 55, pp. 51–60. https://doi.org/10.1016/0009-2541(86)90127-0

    Article  Google Scholar 

  49. Mishra, S., Precambrian chronostratigraphic growth of Singhbhum–Odisha Craton, Eastern India Shield: An Alternative Model, J. Geol. Soc. India, 2006, vol. 67, pp. 356–378. www.researchgate.net/publication/227344452_Pre-cambrian_Chronostratigraphic_Growth_of_SinghbhumOri-ssa_Craton_Eastern_Indian_Shield_An_Alternative_Mo-del/link/0912f4fe195a76e3a0000000/download.

    Google Scholar 

  50. Mishra, S. and Johnson, P. T., Geochronological constraints on evolution of Singhbhum mobile belt and associated basic volcanics of Eastern India Shield, Gondwana Res., 2005, vol. 8, no. 2, pp. 129–142. https://doi.org/10.1016/S1342-937X(05)71113-8

    Article  Google Scholar 

  51. Mitra, A., Elderfield, H., and Greaves, M. J., Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic ridge, Marine Chem., 1994, vol. 46, pp. 217–235.

    Article  Google Scholar 

  52. Mloszewska, A. M., Pecoits, E., Cates, N. L., Mojzsis, S. J., O'Neil, J., Robbins, L. J., and Konhauser, K. O., The composition of earths oldest iron formations: the Nuvuagittuq Supracrustal Belt (Quebec, Canada), Earth Planet. Sci. Lett., 2012, pp. 317-318, 331–342. https://doi.org/10.1016/j.epsl.2011.11.020

  53. Morris, R. C., Genetic modelling for banded iron formations of the Hamersley Group, Pilbara Craton, Western Australia, Precambrian Res., 1993, vol. 60, pp. 243–286. https://doi.org/10.1016/0301-9268(93)90051-3

    Article  Google Scholar 

  54. Partin, C. A., Lalonde, S. V., Planavsky, N. J., Bekker, A., Rouxel, O. J., Lyons, T. W., and Konhauser, K. O., Uranium in iron formations and the rise of atmospheric oxygen, Chem. Geol., 2013, vol. 362, pp. 82–90. https://doi.org/10.1016/j.chemgeo.2013.09.005

    Article  Google Scholar 

  55. Rao, T. G. and Naqvi, S. M., Geochemistry, depositional environment and tectonic setting of the BIFs of the Late Archaean geochemistry of BIF of Jharkhand–Orissa, India, Chem. Geol., 1995, vol. 121, pp. 217–243. https://doi.org/10.1016/0009-2541%2894%2900116-P

    Article  Google Scholar 

  56. Roy, S. and Venkatesh, A. S., Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis, J. Earth Syst. Sci., 2009, vol. 118, pp. 619–641. https://doi.org/10.1007/s12040-009-0056-z

    Article  Google Scholar 

  57. Saha, A. K., Crustal evolution of Singhbhum-North Orissa, Eastern India. Mem. Geol. Soc. India, 1994, vol. 27, pp. 1–341. http://www.geosocindia.org/index.php/bgsi/article/view/55927.

    Google Scholar 

  58. Saha, A. K., Roy, S. L. and Sarkar, S. N., Early history of the earth: Evidence from the Eastern India Shield, Mem. Geol. Soc. India, 1988, vol. 8, pp. 13–37. http://www.geosocindia.org/index.php/jgsi/article/view/64492 .

    Google Scholar 

  59. Savko, K. A., Bazikov, N. S., and Artemenko, G. V., Geochemical evolution of the banded iron formations of the Voronezh Crystalline Massif in the Early Precambrian: sources of matter and geochronological constraints, Stratigraphy. Geol. Corelation, 2015, vol. 23, no. 5, pp. 451–467. https://doi.org/10.1134/S0869593815050068

    Article  Google Scholar 

  60. Sholkovitz, E. R., Shaw, T. J., and Schneider, D. L., The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 3398–3402. https://doi.org/10.1016/0016-7037(92)90386-W

    Article  Google Scholar 

  61. Spier, C. A., de Oliveira, S., Sial, A. N., and Rios, F. J., Geochemistry and genesis of the banded iron formations of the Caue Formation, Quadrilatero Ferifero, Minas Gerais, Brazil, Precambrian Res., 2007, vol. 152, pp. 170–206. https://doi.org/10.1016/j.precamres.2006.10.003

    Article  Google Scholar 

  62. Sylvestre, G., Laure, N. T. E., Djibril, K. N. G., Arlette, D. S., Cyriel, M., Timoléon, N., and Paul, N. J., A mixed and hydrothermal origin of superior type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Consraints from petrography and geochemistry, Ore Geol. Rev., 2017, vol. 80, pp. 860-875. https://doi.org/10.1016/j.oregeorev.2016.08.021

    Article  Google Scholar 

  63. Sylvestre, G., Timoleon, N., Kouankap Nono Gus Djibril, et al., Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, Southern Cameroon: Implications for the origin and depositional environment, Chem. Erde, 2015, vol. 75, no. 3, pp. 375–387. http://dx.doi.org/10.1016%2Fj.chemer.2015.08.001

  64. Taylor, S. R. and McLennan, S. M., The Continental Crust: its Composition and Evolution Blackwell: London, 1985. https://www.osti.gov/biblio/6582885-continental-crust-its-composition-evolution.

    Google Scholar 

  65. Trendall, A. F., The significance of iron-formation in the Precambrian stratigraphic record, Precambrian Sedimentary Environments: A Modern Approach to Depositional Systems, Altermann, W. and Corcoran, P.L. Eds., Int. Ass. Sedimentol. Spec. Publ., 2002, vol. 33, pp. 33–66. https://doi.org/10.1002/9781444304312.ch3

    Article  Google Scholar 

  66. Usui, A. and Someya, M., Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific, Geol. Soc. London, Spec. Publ., 1997, vol. 119, pp. 177–198. https://ui.adsabs.harvard.edu/link_gateway/1997GSLSP.119..177U/doi:10.1144/ GSL.SP.1997.119.01.12

    Article  Google Scholar 

  67. Walker, J. C., Klein, C., Schidlowski, M., Schopf, J. W., Stevenson, D. J., and Walter, M. R., Environmental evolution of the Archean–Early Proterozoic earth, in Earth’s Earliest Biosphere, its Origin and Evolution, Schopf, J.W. Eds., Princeton: University Press, 1983.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thankfully acknowledge the warm hospitality and technical supports provided by the mining industries, M/s Tata Steel, M/s Essel Mining, M/s Rungta Mines and M/s Sarda Mines Private Limited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Nanda or D. Beura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda, S.K., Beura, D. Implicating the Origin and Depositional Environment of Banded Iron Formation (BIF) of Bonai-Keonjhar Iron Ore Belt in Eastern India from its Petrography and Geochemistry. Geol. Ore Deposits 63, 497–514 (2021). https://doi.org/10.1134/S1075701521060076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521060076

Keywords:

Navigation