Skip to main content
Log in

New Copper–Precious Metal Occurrence in Gabbro of the Serebryansky Kamen Massif, Ural Platinum Belt, Northern Urals

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

This paper provides a detailed geological description of the Serebryansky Kamen gabbro massif and copper–precious metal mineralization found for the first time within it. The first data on the distribution and localization of disseminated copper–precious metal mineralization in the central part of the massif have been obtained. It was found that copper sulfides (bornite, chalcopyrite, digenite, and chalcocite) are predominantly hosted in melanocratic taxitic varieties of amphibole gabbro. Elevated precious-metal concentrations were measured and precious-metal minerals were identified for the first time in gabbro enriched in sulfides in the northern part of the Ural platinum belt. The Pd–Pt–Fe–Cu intermetallic compounds, sulfide (vysotskite), tellurides (merenskyite, Pd-melonite, kotulskite), bismuthotellurides (michenerite), arsenides, platinum and palladium arsenotellurides (sperrylite, arsenopalladinite), and native gold were identified. Based on a geochemical survey, the resources of copper and precious metals in the Serebryansky Kamen gabbro massif are 760.1 kt of Cu and 97.1 t of precious metals, dominated by Au and Pd. The identified mineralized zones are comparable to the complex Volkovsky deposit in size, structure, and composition. A geological and genetic model is proposed, which can be widely used in prospecting for copper and precious metals in the gabbroic parts of dunite–clinopyroxenite–gabbro massifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

Notes

  1. Results of Comprehensive Prospecting for Copper–Titanomagnetite and Titanomagnetite Ores in the Serebryansky Kamen District, V.I. Bobrov, Ed., Ural Territorial Geological Department, 1978, vol. I.

REFERENCES

  1. Anikina, E.V. and Alekseev, A.V., Mineral-geochemical characteristics of gold–palladium mineralization in the Volkovsky gabbro-diorite massif (Platinum Belt of the Urals), Litosfera, 2010, no. 5, pp. 75–100.

  2. Anikina, E.V., Zakkarini, F., Knauf, V.V., Rusin, I.A., Pushkarev, E.V., and Garuti, J., Palladium and gold minerals in ores of the Baron occurrence (Volkovsky gabbro-diorite massif), Vestn. Ural’sk. Otd. Ross. Mineral. O-va, Yekaterinburg: IGG UrO RAN, 2005, pp. 5–25.

    Google Scholar 

  3. Bea, F., Fershtater, G.B., Montero, P., et al., Recycling of continental crust into mantle as revealed by Kytlym dunite zircons, Ural Mts, Russia, Terra Nova, 2001, vol. 13, pp. 407–412.

    Article  Google Scholar 

  4. Donna, L.W. and Bernard, W.E., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  5. Durazzo, A. and Taylor, L., Experimental exsolution textures in the system bornite–chalcopyrite: genetic implications concerning natural ores, Mineral. Deposita, 1982, vol. 17, pp. 79–97. https://doi.org/10.1007/BF00206377

    Google Scholar 

  6. Efimov, A.A., Results of 100-year study of the Platinum Belt of the Urals, Litosfera, 2010, no. 5, pp. 134–153.

  7. Efimov, A.A., Platinum–palladium copper-titanomagnetite mineralization in the gabbro of Serebryansky Kamen, Regional. Geol. Metallogen., 2006, vol. 28, pp. 112–115.

    Google Scholar 

  8. Efimov, A.A. and Efimova, L.P., Kytlymskii platinonosnyi massiv (Kytlym Platinm-Bearing Massif), Moscow: Nedra, 1967.

  9. Efimov, A.A., Efimova, L.P., and Volchenko, Yu.A., Platinum potential of copper sulfide ores of the Serebryansky Kamen (Platinum Belt of the Urals), Ezhegodnik-2002 (Yearbook-2002), Yekaterinburg, 2002, pp. 219–222.

  10. Efimov, A.A., Ronkin, Yu.L., Sindern, S., et al., New U–Pb data on zircons from plagiogranite of the Kytlym Massif: isotopic ages of late events in the history of the Uralian Platinum Belt, Dokl. Earth Sci., 2005, vol. 403A, no. 6, pp. 896–900.

    Google Scholar 

  11. Erokhin, Yu.V., Khiller, D.V., and Gottman, I.A., Cyanotrichite and broshantite on wastes of the copper–sulfide occurrences of the Serebryansky Kamen (Kytlym Massif, Northern Urals), Mineralogiya tekhnogeneza—2017 (Mineralogy of Technogenesis-2017), Miass: IMinUrO RAN, 2017, pp. 53–59.

  12. Fershtater, G.B., Empirical plagioclase–hornblende barometer, Geokhimiya, 1990, no. 3, pp. 328–335.

  13. Fershtater, G.B., Paleozoiskii intruzivnyi magmatizm Srednego i Yuzhnogo Urala (Paleozoic Intrusive Magmatism of the Middle and South Urals), Yekaterinburg: RIO UrO RAN, 2013.

  14. Fershtater, G.B., Bea, F., Borodina, N.S., et al., Insight into the petrogenesis of the Urals Platinum Belt: new geochemical evidence, Geochem. Int., 1999, vol. 37, no. 4. S. 352–370.

    Google Scholar 

  15. Genkin, A.D., Mineraly platinovykh metallov i ikh assotsiatsii v medno-nikelevykh rudakh Noril’skogo mestorozhdeniya (Minerals of Platinum Metals and their Association in the Copper–Nickel Ores of the Norilsk Deposit), Moscow: Nauka, 1968.

  16. Ghiorso, M.S., Thermodynamic analysis of the effect of magnetic ordering on miscibility gaps in the Fe–Ti cubic and rhombohedral oxide minerals and Fe-Ti oxide geothermometer, Phys. Chem. Mineral., 1997, vol. 25, pp. 328–352.

    Article  Google Scholar 

  17. Godlevskii, M.N., Magmatic deposits, Genezis endogennykh rudnykh mestorozhdenii (Genesis of Endogenous Ore Deposits), Moscow: Nedra, 1968, pp. 7–83.

    Google Scholar 

  18. Gongal’skii, B.I. and Krivolutskaya, N.A., Chineiskii rassloennyi pluton (Chinei Layered Pluton), Novosibirsk: Nauka, 1993.

  19. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 200 000. Izdanie vtoroe. Seriya Sredneural’skaya. List O-40-VI (Kytlym). Ob"yasnitel’naya zapiska (State Geologucal Map of the Russian Federation on a Scale 1 : 200 000. 2nd Edition. Sredneural;skaya Series. Sheet O-40-VI (Kytlym). Explanatory Note), Shalaginov, V.V, Eds., St. Petersburg: Kart. Fabrika VSEGEI, 2010.

  20. Gosudarstvennyi doklad o sostoyanii i ispol’zovanii mineral’no-syr’evykh resursov Rossiiskoi Federatsii v 2018 godu (State Report on the State and Use of the Mineral–Raw Resources of the Russian Federation in 2018), Kiselev, E.A, Eds., Moscow: VIMS, 2019.

  21. Hoffman, E.L. and Maclean, W.H., Phase relations of michenerite and merenskyite in the Pd–Bi–Te system, Econ. Geol., 1976, vol. 71, no. 7, pp. 1461–1468.

    Article  Google Scholar 

  22. Holland, T. and Blundy, J., Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry, Contrib. Mineral. Petrol., 1994, vol. 116, pp. 433–447.

    Article  Google Scholar 

  23. Huminicki, M., Sylvester, P., Lastra, R., Cabri, L., Evans-Lamswood, D., and Wilton, D., First report of platinum-group minerals from a hornblende gabbro dyke in the vicinity of the southeast extension zone of the Voisey’s Bay Ni–Cu–Co deposit, Labrador, Mineral. Petrol., 2008, vol. 92, pp. 129–164.

    Article  Google Scholar 

  24. Irber, W., The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim Cosmochim Acta, 1999, vol. 63, nos 3/4, pp. 489–508.

    Article  Google Scholar 

  25. Ivanov, O.K., Kontsentricheski-zonal’nye piroksenit-dunitovye massivy Urala: (Mineralogiya, petrologiya, genezis) (Concentrically Zoned Pyroxenite–Dunite Massifs of the Urals: Mineralogy, Petrology, and Genesis), Yekaterinburg: Ural. Inst., 1997.

  26. Kashin, S.A., Problem of Gabbroid-Related Copper Disseminated Ores at the Urals, Sov. Geologiya, 1941, no. 2, pp. 63–68.

  27. Klaver, M., Matveev, S., Berndt, J., Lissenberg, C.J., and Vroon, P.Z., A mineral and cumulate perspective to magma differentiation at Nisyros Volcano, Aegean Arc, Contrib. Mineral. Petrol., 2017, vol. 172, pp. 1–23.

    Article  Google Scholar 

  28. Colman, R.G., Ophiolites: Ancient Oceanic Lithosphere, Berlin: Springer, 1977.

    Book  Google Scholar 

  29. Korneev, A.V., Vikhko, A.S., Fatov, N.V., and Ivashchenko, V.I., The Viksha deposit as the first large economically promising platinum ore object at the territory of Karelia, Gornyi Zh., 2019, no. 3, pp. 31–34

  30. Li, K., Brugger, J., and Pring, A., Exsolution of chalcopyrite from bornite–digenite solid solution: an example of a fluid-driven back-replacement reaction, Mineral. Deposita, 2018, vol. 53, pp. 903–908.

    Article  Google Scholar 

  31. McDonough, W.F. and Sun, S.-S., The composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  32. Mikhailov, V.V. and Stepanov, S.Yu., Noble-metal mineralization, ore-concentrating minerals of the Serebryansky Kamen, Novoe v poznanii protsessov rudoobrazovaniya: VII Rossiiskaya molodezhnaya nauchno-prakticheskaya Shkola (New in Understanding of Ore Formation Processes: 7th Russian Youth Scientific–Practical School), Moscow: IGEM RAN, 2018, pp. 263–267.

    Google Scholar 

  33. Mikhailov, V.V., Stepanov, S.Yu., and Khanin, D.A., Mineralogical-petrological characteristics of mineralization of Serebryanyi Kamen, Materialy Ural’skoi mineralogicheskoi shkoly—2018 (Proc. Uralian Mineralogical School— 2018), Yekaterinburg, 2018, pp. 113–115.

  34. Mochalov, A.G., Tolkachev, M.D., Polekhovsky, Yu.S., and Goryacheva, E.M., Bortnikovite, Pd4Cu3Zn, a new mineral species from the unique Konder Placer Deposit, Khabarovsk Krai, Russia, Geol. Ore Deposits, 2007, vol. 49, no. 4, pp. 318–327.

    Article  Google Scholar 

  35. Moloshag, V.P. and Korobeinikov, A.F., New data on PGE mineralization of copper–iron–vanadium ores, Magmaticheskie i metamorficheskie obrazovaniya Urala i ikh metallogeniya (Magmatic and Metamorphic Complexes of the Urals and their Metallogeny), Yekaterinburg: UrO RAN, 2000, pp. 90–101.

    Google Scholar 

  36. Naldrett, A.J., Magmaticheskie sul’fidnye mestorozhdeniya medno-nikelevykh i platinometal’nykh rud (Magmatic Sulfide Deposits of Copper–Nickel and PGM Ores), Sankt-Peterburg: SPBGU, 2003.

  37. Nixon, G.T., Manor, M.J., and Scoates, J.S., Cu-PGE-sulphide mineralization in the Tulameen Alaskan type complex: analogue for Cu-PGE reefs in layered complexes? Brit. Columbia Geol Surv Geofile, 2018, p. 2.

    Google Scholar 

  38. Perelman, A.I., Geokhimiya (Geochemistry), Moscow: Vysshaya shkola, 1989.

  39. Petrov, G.A., Pushkarev, E.V., Ronkin, Yu.L., and Tristan, N.I., New data on compositionand age of metamorphic surrounding of the Kytlym dunite–clinopyroxenite–tylaite gannro massif (Central Urals), Magmatizm i metamorfizm v istorii Zemli: Tezisy dokladov XI Vserossiiskogo petrograficheskogo soveshchaniya (Magmatism and Metamorphism in the Earth’s Evolution. Proc. Reports of 11th All-Russian Petrographic Conference), Yekaterinburg: Inst. Geol. Geokhim. UrO RAN, 2010, vol. 2, pp. 123–124.

  40. Poltavets, Yu.A., Poltavets, Z.I., Nechkin, G.S., et al., Volkovsky deposit of titanomagnetite and copper–titanomagnetite ores with accompanying noble-metal mineralization, the Central Urals, Russia, Geol. Ore Deposits, 2011, vol. 53, no. 2, pp. 126–139.

    Article  Google Scholar 

  41. Popov, V.S. and Belyatsky, B.V., Sm–Nd age of dunite–clinopyroxenite–tylaite association of the Kytlym Massif, the Platinum Belt of the Urals, Dokl. Earth Sci., 2006, vol. 409, no. 1, pp. 795–800.

    Article  Google Scholar 

  42. Pushkarev, E., Gottman, I., Travin, A., and Yudin, D., Time of termination of ultramafic magmatism in the Ural Platinum Belt, Dokl. Earth Sci., 2020, pp. 87–91.

  43. Savel’ev, D.E. and Blinov, I.A., Noble-metal mineralization in the apatite–titanomagnetite ores of the Suroyamsky massif, Central Urals, Georesursy, 2020, vol. 22, no. 4, pp. 98–100. https://doi.org/10.18599/grs.2020.4.98-100

    Article  Google Scholar 

  44. Schmidt, M.W., Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer, Contrib. Mineral. Petrol., 1992, vol. 110, pp. 304–310.

    Article  Google Scholar 

  45. Sugaki, A., Thermal studies on bornite in melted sulphur, J. Japan. Ass. Mineral. Petrol. Econ. Geol., 1954, pp. 187–197.

  46. Sveshnikova, E.V., Structure of the Kumbinsky gabbroid massif of the Northern Urals, Tr. IGEM, 1961, vol. 41, pp. 49–66.

    Google Scholar 

  47. Toplis, M.R. and Carroll, M.R., An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations and mineral–melt equilibrium in ferrobasaltic systems, J. Petrol., 1995, vol. 36, no. 50, pp. 1137–1169.

    Article  Google Scholar 

  48. Volchenko, Yu.A., Koroteev, V.A., and Nesterova, S.I., A comparative characteristics of platinum potential of ferroclinopyroxenite complexes of the Uralian mobile belt, Ezhegodnik-2008 (Yearbook-2008), Yekaterinburg: IGG UrO RAN, 2009, pp. 209–216.

    Google Scholar 

  49. Volchenko, Yu.A., Koroteev V.A., and Zoloev, K.K., Low-sulfide PGM mineralization in the ultramafic rocks of the Volkovsky massif (Central Urals), Ezhegodnik-1995 (Yearbook-1995), Yekaterinburg: IGG UrO RAN, 1996, pp. 135–140.

    Google Scholar 

  50. Volchenko, Yu.A., Neustoeva, I.I., Nesterova, S.I., Genetic nature of noble metal and non-ferrous metals in the Chinei copper ores: geotechnological implications, Geoekologiya i prirodnye resursy basseina verkhnego Amura: problemy izucheniya i osvoeniya: Tez. dokl. mezhdunar. Konf. (Geoecology and Natural Resources of the Upper Amur Basin: Problems of Studyand Development. Proc. Int. Conference), Chita: ChIPR SO AN SSSR, 1991, pp. 152–155.

  51. Vorob’eva, O.A., Samoilova, N.V., and Sveshnikova, E.V., Gabbro-piroksenit-dunitovyi poyas Srednego Urala (Gabbro–Pyroxenite–Dunite Belt of the Central Urals), Moscow: AN SSSR, 1962.

  52. Wilkomirsky, I., Parra, R., Parada, L.F., Balladares, E., Seguel, E., Etcheverry, J., and Diaz, R., Thermodynamic and kinetic mechanisms of bornite/chalcopyrite/magnetite formation during partial roasting of high-arsenic copper concentrates, Metallurg. Mater. Trans. B, 202, vol. 51, pp. 1540–1551. https://doi.org/10.1007/s11663-020-01870-4

  53. Woodruff, L.G., Nicholson, S.W., and Fey, D.L., A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites, U.S. Geol. Surv. Sci. Invest. Rept., 2013. pp. 2010–5070, no. 2010–5070–K.

  54. Zavaritskii, A.N., O klassifikatsii magmaticheskikh rudnykh mestorozhdenii (On Classification of Magmatic Ore Deposits), Leningrad: Geol. kom., 1926.

  55. Zhao, J., Brugger, J., Chen, G., Ngothai, Y., and Pring, A., Experimental study of the formation of chalcopyrite and bornite via the sulfidation of hematite: mineral replacements with a large volume increase, Am. Mineral., 2014, vol. 99, pp. 343–354.

    Article  Google Scholar 

  56. Zhilin, I.V., Au + Pt + Pd specialization of apatite + titanomagnetite ores of the Suroyamsky alkaline + ultrabasic massif (western slope of the Urals), Metallogeniya drevnikh i sovremennykh okeanov.Usloviya rudoobrazovaniya (Metallogeny of Ancient and Modern Oceanic Conditions of Ore Formation), Miass: IMin UrO RAN, 2006, pp. 214–217.

  57. Zhilin, I.V. and Puchkov, V.N., Geologiya i rudonosnost' Nyazepetrovskoi zony (Srednii Ural) (Geology and Ore Potential of the Nyazepetrovskaya Zone, Central Urals), Ufa: DizainPoligrafServis, 2009.

  58. Zoloev, K.K., Volchenko, Yu.A., Koroteev, V.A., Malakhov, I.A., Mardiros’yan, A.N., and Khrypov, V.N., Platinometal’noe orudenenie v geologicheskikh kompleksakh Urala (PGM Mineralization in the Geological Complexes of the Urals), Yekaterinburg: DPR po Ural’skomu okrugu, OAO UGSE, IGG UrO RAN, UGGGA, 2001.

Download references

ACKNOWLEDGMENTS

The authors thank the reviewers for careful and critical reading of the manuscript. The comments by the anonymous reviewer and N.D. Tolstykh undoubtedly improved the quality of the manuscript.

Funding

Field and analytical works were supported by the Russian Science Foundation (project no. 20-77-00073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Mikhailov or S. Yu. Stepanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Baksheev

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, V.V., Stepanov, S.Y., Kozlov, A.V. et al. New Copper–Precious Metal Occurrence in Gabbro of the Serebryansky Kamen Massif, Ural Platinum Belt, Northern Urals. Geol. Ore Deposits 63, 528–555 (2021). https://doi.org/10.1134/S1075701521060040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521060040

Keywords:

Navigation