Skip to main content
Log in

Fluid Inclusions and Raman Spectroscopy of Anglesite from Uchich Sulphide Mineralization, Himachal Himalaya, India: Implication for the Alteration of Ores during Exhumation Along the Thrust

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

This study focuses on the Uchich mineral occurrence, which is also known as a silver mine in Himachal Himalaya, India. The mineralization occurs in quartz veins along the Chail thrust with quartzite forming the foot wall and low to medium grade metamorphics constituting the hanging wall. The fluid inclusion study and micro Raman spectroscopy are carried out on anglesite in order to investigate the evolution of fluid during the formation and deformation of anglesite. Two types of fluid inclusions are found in anglesite, type A1 monophase aqueous inclusions, type A2 biphase inclusions with variable composition identified either as H2O + NaCl or H2O + H2S ± CO2 ± CH4 ± N2 ± SO2 inclusions. It is attributed that fluid involved in anglesite precipitation in Uchich assemblage was not a simple water solution, but a complex fluid with saline water and gases like H2S, CO2, N2, CH4, and SO2. The fluid-rich conditions and strong acidic nature of the evolved fluid likely promoted the anglesite formation along the Chail/Kulu thrust. An attempt has been made to use the micro Raman spectroscopy of anglesite for understanding the pressure, which has also been assessed using fluid inclusion information. The Raman spectroscopy study of this anglesite suggests a formation pressure of about 2 to 3 kbar. However, the available fluid inclusion evidence a lower pressure for anglesite. Pressure assessment through fluid inclusion is <1 kbar at 200°C and <1.7 kbar at 300°C. Typical features of fluid inclusions in anglesite point to their deformation in the internal overpressure conditions, reflecting sustained exhumation of the ore body after the anglesite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ahmad, T. and Bhat, M.I., Geochemistry and petrogenesis of the Mandidarla volcanics, Northwestern Himalayas, Precambrian Res., 1987, vol. 37, pp. 231–256.

    Google Scholar 

  2. Andersen, T., Burke, E.A.J., and Austrheim, H., Nitrogen bearing, aqueous fluid inclusions in some eclogites from the Western Gneiss Region of the Norwegian Caledonides, Contrib. Mineral. Petrol., 1989, vol. 103, pp. 153–165.

    Google Scholar 

  3. Anderson, T., Austrheim, H., Burke, E.A.J., and Elvevold, S., N2 and CO2 in deep crustal fluids: evidence from the Caledonides of Norway, Chem. Geol., 1993, vol. 108, pp. 113–132.

    Google Scholar 

  4. Arndt, N.T. and Ganino, C., Resources Minerals: Nature, Origine et Exploitation, Cours et Exercices Corriges, Dunod: 2010.

    Google Scholar 

  5. Baumgartner, M. and Bakker, R.J., Raman spectroscopy of pure H2O and NaCl–H2O containing synthetic fluid inclusions in quartz-a study of polarization effects, Mineral. Petrol., 2009, vol. 95, pp. 1–15.

    Google Scholar 

  6. Beny, C., Guilhaumou, N., and Touray, J.C., Native-sulphur bearing fluid inclusions in the CO2, H2S–H2O–S system—microthermometry and Raman microprobe (MOLE) Analysis—thermochemical interpretations, Chem. Geol, 1982, vol. 37, pp. 113–127.

    Google Scholar 

  7. Bhanot, V.B., Bhandari, A.K., Singh, V.P., and Kansal, A.K., Precambrian, 1220 my. Rb–Sr whole rock isochron age for Bandal granite, Kulu Himalaya, Himachal Pradesh, Himalayan Geology Seminar, Delhi, 1976.

  8. Bhanot, V.B., Bhandari, A.K., Singh, V.P., and Kansal, A.K., Geochronological and geological studies of granites of Higher Himalaya, Northeast Manikaran, H.P., J. Geol. Soc. India, 1979, vol. 20, pp. 90–94.

    Google Scholar 

  9. Bhargava, O.N., The tectonic windows of the Lesser Himalaya, Him. Geol., 1980, vol. 10, pp. 135–155.

    Google Scholar 

  10. Bhargava, O.N., Narain, K., and Dass, A.S., A note on the Rampur window, district Mahasu, H.P., J. Geol. Soc. India, 1972, vol. 13, no. 3, pp. 277–280.

    Google Scholar 

  11. Bodnar, R.J., Revised equation and table for determining the freezing point depression in H2O–NaCl solutions, Geochim. Csosmochim. Acta, 1993, vol. 57, pp. 683–684.

    Google Scholar 

  12. Bodnar, R.J., Interpretation of data from aqueous-electrolyte fluid inclusions, in Fluid Inclusions; Analysis and Interpretation, Short Course Ser.–Mineral. Assoc. of Can., Samson, I.M., Anderson, A.J., and Marshall, D., Eds., London, Ont., Canada, 2003, vol. 32, pp. 81–100.

    Google Scholar 

  13. Brown, P.E., Flincor: A Microcomputer Program for the Reduction and Investigation of Fluid Inclusion Data, Am. Mineral., 1989, vol. 7, pp. 1390–1393.

    Google Scholar 

  14. Burke, E.A.J., Raman microspectrometry of fluid inclusions: The daily practice, in Fluid Inclusions in Minerals: Methods and Applications, Short Course of the Working Group IMA, de Vivo, B., and Frezzotti, M.L., Eds., Virginia Polytechnic Institute and State University, 1995.

    Google Scholar 

  15. Burke, E.A.J., Raman microspectrometry of fluid inclusions, Lithos, 2001, vo. 55, pp. 139–158.

    Google Scholar 

  16. Burke, E.A.J. and Lustenhouwer, W.L., The application of a multichannel laser Raman microprobe (Microdil-28) to the analysis of fluid inclusions, Chem. Geol., 1987, vol. 61, no. 1, pp. 1–17.

    Google Scholar 

  17. Calvert, J., Vazeeri Rupi, the Silver Country of the Vazeers, in Kulu: its Beauties, Antiquities and Silver Mines, New York–London: 1873.

    Google Scholar 

  18. Clocchiatti, R., Dhamelincourt, P., Massare, D., Tanguy, J.C., and Weiss, J., Les pyroclastes de l’eruption de 1669 de l’Etna: donnees physico-chimiques obtenues par l’etude des inclusions intramine’rales, ECROFI (Orleans) Abstracts, 1983, p. 5.

    Google Scholar 

  19. Cocker, M.D., Supergene rare earth element deposits and their potential in laterites of the southeastern US, Geol. Soc. Am. Abstracts with Programs, 2012, vol. 44, no. 7, p. 346.

    Google Scholar 

  20. Crawford, M.L., Phase equilibria in aqueous fluid inclusions, Short Course in Fluid Inclusions: Application to Petrology, Hollister, L.S., and Crawford, M.L., Eds., Mineral. Ass. Canada, 1981, vol. 6, pp. 75–100.

    Google Scholar 

  21. Darimont, A., Burke, E.A.J., and Touret, J.L.R., Nitrogen-rich metamorphic fluids in Devonian metasediments from Bastogne, Belgium, Bull. Mineral, 1988, vol. 111, pp. 321–330.

    Google Scholar 

  22. Dawson, P., Hargreave, M.M., and Wilkinson, G.R., Polarized IR. Reflection, absorption and laser raman studies on a single crystal of BaSO4, Spectrochim. Acta, 1977, vol. 33A, no. 2, pp. 83–93.

    Google Scholar 

  23. Dove, P.M. and Rimstidt, J.D., The solubility and stability of scorodite, FeAsO4.2H2O, Am. Mineral., 1985, vol. 70, nos. 7–8, pp. 838–844.

    Google Scholar 

  24. Dubessy, J., Audeoud, D., Wilkins, R., and Kosztolanyi, C., The use of the Raman Microprobe Mole in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions, Chem. Geol., 1982, vol. 37, pp. 137–150.

    Google Scholar 

  25. Dubessy, J., Poty, B., and Ramboz, C., Advances in C–O–H–N–S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions, Eur. J. Mineral., 1989, vol. 1, pp. 517–534.

    Google Scholar 

  26. Dubessy, J., Buschaert, S., Lamb, W., Pironon, J., and Thiery, R., Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic modelling and application to petroleum basins, Chem. Geol., 2001, vol. 173, pp. 193–205.

    Google Scholar 

  27. Faure, G., Principles and Applications of Geochemistry, 2nd Edition, New Jerrsey: Prentice-Hall, 1998.

  28. Frank, W., Thoni, M., and Purtscheller, F., Geology and petrography of Kulu–South Lahul area, Colloq. Internation. CNRS, 1977, vol. 33, pp. 147–172.

    Google Scholar 

  29. Frank, W., Grasemann, B., and Miller, C., Geological map of the Kishtwar–Chamba–Kulu region (NW Himalayas India), J. Geol., 1995B-A, vol. 138, pp. 299–308.

  30. Frezzotti, M.L., Burke, E.A.J., De Vivo, B., Stefanini, B., and Villa, I.M., Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii), Eur. J. Mineral., 1992, vol. 4, pp. 1137–1153.

    Google Scholar 

  31. Garrels, R.M. and Christ, C.L., Solutions, Minerals, and Equilibria, New York: Harper and Row, 1965.

    Google Scholar 

  32. Goldstein, R.H., Petrographic analysis of fluid inclusions, in Fluid Inclusions: Analysis and Interpretation, Mineral. Assoc. Can., Short Course Ser., Samson, I. Anderson, A. Marshall, D., Eds., 2003, vol. 32, pp. 9–53.

  33. Griffith, W.P., Raman Spectroscopy of Minerals, Nature, 1969, vol. 224, no. 5216, pp. 264–266.

    Google Scholar 

  34. Hall, D.L., Sterner, S.M., and Bodnar, R.J., Freezing point depression of NaCl-KCl-, no. 20.

  35. Jain, A.K. and Anand, A., Deformational and strain patterns of an intracontinental collision ductile shear zone; an example from the Higher Garhwal Himalaya, J. Struct. Geol., 1988, vol. 10, pp. 717-734, https://doi.org/10.1016/0191-8141(88)90079-X

    Article  Google Scholar 

  36. Keim, M.F. and Markl, G., Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modelling, and estimation of the growth rate of pyromorphite, Am. Mineral., 2015, vol. 100, pp. 1584–1594.

    Google Scholar 

  37. Kresse, C., Lobato, L.M., Figueiredo, E., Silva, R.C., Hagemann, S.G., Banks, D., and Vitorino, A.L.A., Fluid signature of the shear zone-controlled Veio de Quartzo ore body in the world-class BIF-hosted Cuiabá gold deposit, Archaean Rio das Velhas greenstone belt, Brazil: a fluid inclusion study, Mineral. Deposita, 2020, vol. 55, pp. 1441–1466. https://doi.org/10.1007/s00126-019-00941-0

    Article  Google Scholar 

  38. Lee, P.L., Huang, E., Yu, S.C., and Chen, Y.H., High-pressure Raman study on anglesite, World J. Condens. Matter. Phys., 2013, vol. 3, pp. 28–32.

    Google Scholar 

  39. Mernagh, T.P. and Wilde, A.R., The use of the laser Raman microprobe for the determination of salinity in fluid inclusions, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 765–771.

    Google Scholar 

  40. Miller, C., Klotzli, U., Frank, W., Thoni, M., and Grasemann, B., Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism, Precambrian Res., 2000, vol. 103, nos. 3–4, pp. 191–206.

    Google Scholar 

  41. Miller, C., Thoni, M., Frank, W., Grasemann, B., Klotzil, U., Guntli, P., and Draganits, E., The early Paleozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement, Geol. Mag., 2001, vol. 138, pp. 237–251.

    Google Scholar 

  42. Mishra, B., Pruseth, K.L., Hazarika, P., and Chinnasamy, S.S., Nature and source of the ore-forming fluids associated with orogenic gold deposits in the Dharwar Craton, Geosci. Front., 2018, vol. 9, pp. 715–726.

    Google Scholar 

  43. Misra, D.K. and Tewari, V.C., Tectonics and sedimentation of the rocks between Mandi and Rohtang Beas Valley, Himachal Pradesh, India, Geosci. J., 1988, vol. 9, pp. 153–172.

    Google Scholar 

  44. Norman, D.I., Analysis of SO2 in fluid inclusions: fact or fiction, PACROFI V, Cuernavaca, Morelos, Mexico, 1994, p. 69.

  45. Nriagu, J.O. and Moore, P.B., Phosphate Minerals, Heidelberg: Springer, 1984.

    Google Scholar 

  46. Ojha, A.K., Sharma, R., Srivastava, D.C., and Lister, G.S., Polyphase development of chocolate tablet boudins in the SAT zone, Kumaun Lesser Himalaya, India, J. Struct. Geol., 2019, vol. 127. https://doi.org/10.1016/j.jsg.2019.103863

  47. Pasteris, J.D., Kuehn, C.A., and Bodnar, R.J., Applications of the laser Raman microprobe RAMANOR U-1000 to hydrothermal ore deposits: Carlin as an example, Econ. Geol., 1986, vol. 81, pp. 915–930.

    Google Scholar 

  48. Pasteris, J.D., Wopenka, B., and Seitz, J.C., Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 979–988.

    Google Scholar 

  49. Poty, B., Leroy, J., and Jachimowicz, L., Fluid inclusions studies in quartz from fissures of western and central Alps, Schweiz, Mineral, Petrogr. Mitt., 1976, vol. 54, pp. 717–752.

    Google Scholar 

  50. Rana, S. and Sharma, R., The unusual mineralization in Uchich area, Parvati valley, Himachal Himalaya, NCESS with Special Reference to Himalaya: Advancement and Challenges, Wadia Institute of Himalayan Geology, India, 2018, p. 91.

    Google Scholar 

  51. Reich, M. and Vasconcelos, P.M., Geological and economic significance of supergene metal deposits, Elements, 2015, vol. 11, no. 5, pp. 305–310.

    Google Scholar 

  52. Reichert, J. and Borg, G., Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits, Ore Geol. Rev., 2008, vol. 33, pp. 134–151.

    Google Scholar 

  53. Roedder, E., Fluid Inclusions, Rev. Minerol. Mineral. Soc. Am., Washington, 1984.

    Google Scholar 

  54. Rosasco, G.J., Roedder, E., and Simmons, J.H., Laser-excited Raman spectroscopy for non-destructive partial analysis of individual phases in fluid inclusions in minerals, Science, 1975, vol. 190, pp. 557–560.

    Google Scholar 

  55. Rosso, K.M. and Bodnar, R.J., Microthermometric and Raman spectroscopic detection limits of CO2, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3961–3975.

    Google Scholar 

  56. Sachan, H.K., Sharma, R., Sahai, A., and Gururajan, N.S., Fluid events and exhumation history of the Main Central thrust zone, Garhwal Himalaya (India), J. Asian Earth Sci., 2001, vol. 19, pp. 207–221.

    Google Scholar 

  57. Sauniac, S. and Touret, J., Petrology and Fluid inclusion of quartz-kyanite segregation in the Main Central Thrust Zone of the Himalayas, Lithos, 1983, vol. 16, pp. 35–45.

    Google Scholar 

  58. Sawchuk, K., O’Bannon, E.F., Vennari, C., Kavner, A., Knittle, E., and Williams, Q., An infrared and Raman spectroscopic study of PbSO4-anglesite at high pressures, Phys. Chem. Minerals, 2019, vol. 46, pp. 623–637, https://doi.org/10.1007/s00269-019-01027-z

    Article  Google Scholar 

  59. Searle, M.P., Simpson, R.L., Law, R.D., Parrish, R.R., and Waters, D.J., The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal – South Tibet, J. Geol. Soc. London, 2003, vol. 160, pp. 345–66.

    Google Scholar 

  60. Seitz, J.C., Pasteris, J.D., and Wopenka, B., Characterization of CO2–CH4–H2O fluid inclusions by microthermometry and laser Raman microprobe spectroscopy: inferences for clathrate and fluid equilibria, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 1651–1664.

    Google Scholar 

  61. Sharma, V.P., Geology of the Kulu-Rampur Belt, Himachal Pradesh, Mem. Geol. Surv. India, 1977, vol. 106, no 2, pp. 235–407.

    Google Scholar 

  62. Sharma, K.K. and Rashid, S.A., Geochemical evolution of peraluminous Paleoproterozoic Bandal Orthogneiss NW, Himalaya, Himachal Pradesh, India: implications for the ancient crustal growth in the Himalaya, J. Asian Earth Sci., 2001, vol. 19, pp. 413–428.

    Google Scholar 

  63. Sobocinski, D.P. and Kurata, F., Heterogeneous phase equilibria of the hydrogen sulphide carbon dioxide system, AIChE J., 1959, vol. 5, pp. 545–551.

    Google Scholar 

  64. Srikantia, S.V. and Bhargava, O.N., Geology of Himachal Pradesh, Geol. Soc. India, 1998, p. 406.

    Google Scholar 

  65. Steck, A., Geology of the NW Indian Himalaya, Eclogae Geol. Helv., 2003, vol. 96, pp. 147–196.

    Google Scholar 

  66. Sterner, S.M. and Bodnar, R.J., Synthetic fluid inclusions: VII. Reequilibration of fluid inclusions in quartz during laboratory simulated metamorphic burial and uplift, J. Metamorph. Geol., 1989, vol. 7, pp. 243–260.

    Google Scholar 

  67. Stubner, K., Grujic, D., Dunkl, I., Thiede, R., and Eugster, P., Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya, Earth Planet. Sci. Lett., 2018, vol. 481, pp. 273–283. https://doi.org/10.1016/j.epsl.2017.10.036

    Article  Google Scholar 

  68. Van den Kerkhof, A.M. and Hein, U.F., Fluid inclusion petrography, Lithos, 2001, vol. 55, pp. 27–47.

    Google Scholar 

  69. Vannay, J.C., Grasemann, B., Rahn, M., Frank, W., Carter, A., Baudraz, V., and Cosca, M., Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion, Tectonics, 2004, vol. 23, p. TC1014.

    Google Scholar 

  70. Vityk, M.O. and Bodnar, R.J., Textural evolution of synthetic fluid inclusions in quartz during re-equilibration, with applications to tectonic reconstruction, Contrib. Mineral. Petrol., 1995, vol. 121, no. 3, pp. 309–323.

    Google Scholar 

  71. Wall, T. and Horing, D.F., Raman spectra of water in concentrated ionic solutions, J. Chem. Phys., 1967, vol. 47, pp. 784–792.

    Google Scholar 

  72. Walrafen, G.E., Raman spectral studies of the effects of electrolytes on water, J. Chem. Phys., 1962, vol. 36, pp. 1035–1042.

    Google Scholar 

  73. Webb, A., Yin, A., Harrison, T.M., Celerier, J., Gehrels, G., Manning, C.E., and Grove, M., Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogeny, Geosphere, 2011, vol. 7, no. 4, pp. 1013-1061, https://doi.org/10.1130/GES00627.1

    Article  Google Scholar 

  74. Whitney, D.L. and Ewans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Google Scholar 

  75. Wiesmayr, G. and Grasemann, B., Eohimalayan fold and thrust belt: Implications for the geodynamic evolution of the NW-Himalaya (India), Tectonics, 2002, vol. 21, no. 6, 1058.

    Google Scholar 

  76. Wilkinson, J.J., Fluid inclusions in hydrothermal ore deposits, Lithos, 2001, vol. 55, pp. 229–272.

    Google Scholar 

  77. Wyss, M., Hermann, J., and Steck, A., Structural and metamorphic evolution of the northern Himachal Himalaya, NW India (Spiti-eastern Lahul-Parvati valley traverse), Eclogae. Geol. Helv., 1999, vol. 92, pp. 3–44.

    Google Scholar 

  78. Zanin, Y.N. and Zamirailova, A.G., Rare earth elements in supergene phosphates, Geochem. Int., 2009, vol. 47, no. 3, pp. 282–313.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Director Wadia Institute of Himalayan Geology (WIHG) for providing facilities for this work. We thank the editor, Dr. Olga Yu. Plotinskaya, and two anonymous reviewers for helpful and constructive reviews. SR acknowledges the Senior Research Fellowship from WIHG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Rana or R. Sharma.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Sharma, R. & Kumar, S. Fluid Inclusions and Raman Spectroscopy of Anglesite from Uchich Sulphide Mineralization, Himachal Himalaya, India: Implication for the Alteration of Ores during Exhumation Along the Thrust. Geol. Ore Deposits 63, 515–527 (2021). https://doi.org/10.1134/S1075701521060052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521060052

Keywords:

Navigation