Skip to main content
Log in

Elastic fields due to a suddenly expanding spherical inclusion within Mindlin’s first strain-gradient theory

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The notion of dynamic inclusion can be utilized to represent phenomena in micromechanics of solids such as phase transformations, in particular when subjected to dynamic loading. If the size of a dynamic inclusion is comparable to the inherent length parameters of its constituent material, then the size effect manifests its significance. The present paper is, hence, dedicated to the employment of the complete form of Mindlin’s first strain gradient theory of elasticity to address a special class of dynamic inclusion problems. Specifically, in this paper, an analytical solution is obtained for the elastic displacement field developed in an infinitely extended isotropic medium due to a suddenly expanding spherical inclusion that undergoes a constant and uniform distribution of classical dilatational eigenstrains. The employment of such a theoretical framework results in eliminating the classical singularities of the strain and stress fields of the problem. The analysis presented in this paper can, moreover, account for the effect of microinertia on the response of the medium to the sudden expansion of the inclusion, by incorporating an additional characteristic length into the equation of motion of the medium. An extended version for Hadamard conditions associated with the adopted theory is also derived, and subsequently, it is shown that the obtained solution of the considered problem satisfies these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  2. Eringen, A.C.: Mechanics of micromorphic materials. In: Görtler, H. (ed.) Applied Mechanics. Springer, Berlin (1966)

    Google Scholar 

  3. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  4. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  Google Scholar 

  5. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  Google Scholar 

  6. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  7. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Article  Google Scholar 

  8. Ru, C.Q., Aifantis, E.C.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101(1–4), 59–68 (1993)

    Article  MathSciNet  Google Scholar 

  9. Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)

    Article  Google Scholar 

  10. Milligan, W.W., Hackney, S.A., Aifantis, E.C.: Constituive modeling for nanostructured materials. In: Muhlhaus, H. (Ed.), Continuum Models for Materials with Microstructures, chap. 11, pp. 379–394. Wiley (1995)

  11. Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43(13), 1157–1184 (2005)

  12. Lazar, M.: On gradient field theories: gradient magnetostatics and gradient elasticity. Phil. Mag. 94(25), 2840–2874 (2014)

    Article  ADS  Google Scholar 

  13. Lazar, M.: A non-singular continuum theory of point defects using gradient elasticity of bi-Helmholtz type. Phil. Mag. 99(13), 1563–1601 (2019)

    Article  ADS  Google Scholar 

  14. Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff, Dordrecht (1987)

    Book  Google Scholar 

  15. Zhang, X., Sharma, P.: Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems. Int. J. Solids Struct. 42(13), 3833–3851 (2005)

    Article  Google Scholar 

  16. Gao, X.L., Ma, H.M.: Green’s function and Eshelby’s tensor based on a simplified strain gradient elasticity theory. Acta Mech. 207(3–4), 163–181 (2009)

  17. Delfani, M.R., Latifi Shahandashti, M.: Elastic field of a spherical inclusion with non-uniform eigenfields in second strain gradient elasticity. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 473(2205), 20170254 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Sidhardh, S., Ray, M.C.: Inclusion problem for a generalized strain gradient elastic continuum. Acta Mech. 229(9), 3813–3831 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ma, H., Hu, G., Wei, Y., Liang, L.: Inclusion problem in second gradient elasticity. Int. J. Eng. Sci. 132, 60–78 (2018)

    Article  MathSciNet  Google Scholar 

  20. Delfani, M.R., Sajedipour, M.: Spherical inclusion with time-harmonic eigenfields in strain gradient elasticity considering the effect of micro inertia. Int. J. Solids Struct. 155, 57–64 (2018)

    Article  Google Scholar 

  21. Mikata, Y., Nemat-Nasser, S.: Elastic field due to a dynamically transforming spherical inclusion. J. Appl. Mech. 57, 845–849 (1990)

    Article  ADS  Google Scholar 

  22. Cheng, Z.Q., Batra, R.C.: Exact Eshelby tensor for a dynamic circular cylindrical inclusion. J. Appl. Mech. 66, 563–565 (1999)

    Article  ADS  Google Scholar 

  23. Michelitsch, T.M., Gao, H., Levin, V.M.: Dynamic Eshelby tensor and potentials for ellipsoidal inclusions. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2032), 863–890 (2003)

  24. Sarvestani, A.S., Shodja, H.M., Delfani, M.R.: Determination of the scattered fields of an SH-wave by an eccentric coating-fiber ensemble using DEIM. Int. J. Eng. Sci. 46(11), 1136–1146 (2008)

    Article  MathSciNet  Google Scholar 

  25. Shodja, H.M., Delfani, M.R.: 3D elastodynamic fields of non-uniformly coated obstacles: Notion of eigenstress and eigenbody-force fields. Mech. Mater. 41(9), 989–999 (2009)

    Article  Google Scholar 

  26. Wang, J., Michelitsch, T.M., Gao, H.: Dynamic fiber inclusions with elliptical and arbitrary cross-sections and related retarded potentials in a quasi-plane piezoelectric medium. Int. J. Solids Struct. 40(23), 6307–6333 (2003)

    Article  Google Scholar 

  27. Xiao, Z.M., Luo, J.: On the transient elastic field for an expanding spherical inclusion in 3-D solid. Acta Mech. 163(3–4), 147–159 (2003)

    Article  Google Scholar 

  28. Markenscoff, X., Ni, L.: The energy-release rate and “self-force” of dynamically expanding spherical and plane inclusion boundaries with dilatational eigenstrain. J. Mech. Phys. Solids 58(1), 1–11 (2010)

  29. Ni, L., Markenscoff, X.: On self-similarly expanding Eshelby inclusions: Spherical inclusion with dilatational eigenstrain. Mech. Mater. 90, 30–36 (2015)

    Article  Google Scholar 

  30. Ni, L., Markenscoff, X.: The dynamic generalization of the Eshelby inclusion problem and its static limit. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 472(2191), 20160256 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Ni, L., Markenscoff, X.: The self-similarly expanding Eshelby ellipsoidal inclusion: I. Field solution. J. Mech. Phys. Solids 96, 683–695 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ni, L., Markenscoff, X.: The self-similarly expanding Eshelby ellipsoidal inclusion: II. The Dynamic Eshelby Tensor for the expanding sphere. J. Mech. Phys. Solids 96, 696–714 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Yang, S.Y., Escobar, J., Clifton, R.J.: Computational modeling of stress-wave-induced martensitic phase transformations in NiTi. Math. Mech. Solids 14(1–2), 220–257 (2009)

    Article  MathSciNet  Google Scholar 

  34. Backus, G., Mulcahy, M.: Moment tensors and other phenomenological descriptions of seismic sources-I. Continuous displacements. Geophys. J. Int. 46(2), 341–361 (1976)

    Article  ADS  Google Scholar 

  35. Markenscoff, X.: Self-similarly expanding regions of phase change yield cavitational instabilities and model deep earthquakes. J. Mech. Phys. Solids 127, 167–181 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. Lazar, M., Po, G.: On Mindlin’s isotropic strain gradient elasticity: green tensors, regularization, and operator-split. J. Micromech. Mol. Phys. 3(3&4), 1840008 (2018)

  37. Po, G., Admal, N.C., Lazar, M.: The Green tensor of Mindlin’s anisotropic first strain gradient elasticity. Mater. Theory 3(1), 3 (2019)

  38. Delfani, M.R., Tavakol, E.: Uniformly moving screw dislocation in strain gradient elasticity. Eur. J. Mech. A Solids 73, 349–355 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. Delfani, M. R., Taaghi, S., Tavakol, E.: Uniform motion of an edge dislocation within Mindlin’s first strain gradient elasticity. Int. J. Mech. Sci. 105701 (2020)

  40. Lazar, M.: Incompatible strain gradient elasticity of Mindlin type: screw and edge dislocations. Acta Mech. 232(9), 3471–3494 (2021)

    Article  MathSciNet  Google Scholar 

  41. Nazarenko, L., Glüge, R., Altenbach, H.: Positive definiteness in coupled strain gradient elasticity. Cont. Mech. Thermodyn. 33(3), 713–725 (2021)

    Article  MathSciNet  Google Scholar 

  42. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  43. Gourgiotis, P.A., Georgiadis, H.G.: Torsional and SH surface waves in an isotropic and homogenous elastic half-space characterized by the Toupin-Mindlin gradient theory. Int. J. Solids Struct. 62, 217–228 (2015)

    Article  Google Scholar 

  44. Shodja, H.M., Goodarzi, A., Delfani, M.R., Haftbaradaran, H.: Scattering of an anti-plane shear wave by an embedded cylindrical micro-/nano-fiber within couple stress theory with micro inertia. Int. J. Solids Struct. 58, 73–90 (2015)

    Article  Google Scholar 

  45. Lazar, M., Anastassiadis, C.: Lie point symmetries, conservation and balance laws in linear gradient elastodynamics. J. Elast. 88(1), 5–25 (2007)

    Article  MathSciNet  Google Scholar 

  46. Willis, J.R.: Dislocations and inclusions. J. Mech. Phys. Solids 13(6), 377–395 (1965)

    Article  ADS  Google Scholar 

  47. Lazar, M., Agiasofitou, E., Böhlke, T.: Mathematical modeling of the elastic properties of cubic crystals at small scales based on the Toupin-Mindlin anisotropic first strain gradient elasticity. Cont. Mech. Thermodyn. (2021). https://doi.org/10.1007/s00161-021-01050-y

  48. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  49. Altan, S.B., Aifantis, E.C.: On the structure of the mode III crack-tip in gradient elasticity. Scr. Metall. Mater. 26(2), 319–324 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Delfani.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix is dedicated to the determination of the unknown functions \(\Theta _0(r)\) and \(\Theta _1(r;t)\) by solving differential equations (34a) and (34b). It is desired here to use the method of Green’s function for such a purpose. To this end, let us first consider Eq. (34a), and suppose that \({\mathscr {G}}_0(r,r')\) denotes its associated Green’s functions. Then, it can be shown that multiplying both sides of that equation by \(r^2\,{\mathscr {G}}_0(r,r')\) followed by integrating them from 0 to \(\infty \) with respect to r gives rise to

$$\begin{aligned} \int _0^\infty r^2\,\Theta _0(r)\,{\mathscr {G}}_0(r,r')\,\mathrm{d}r-\ell _4^2\int _0^\infty \frac{\mathrm{d}}{\mathrm{d}r}\bigg [\,r^2\frac{\mathrm{d}}{\mathrm{d}r}\Theta _0(r)\bigg ]\,{\mathscr {G}}_0(r,r')\,\mathrm{d}r=\epsilon _0\int _0^{R_0}r^2\,{\mathscr {G}}_0(r,r')\,\mathrm{d}r\,. \end{aligned}$$
(A-1)

If the second integral on the left-hand side of the above equation is expanded by integration by parts twice, this equation can be rewritten as

(A-2)

Now, let us suppose that the Green’s function \({\mathscr {G}}_0(r,r')\) is the solution of the following equation,

$$\begin{aligned} \Bigg (1-\ell _4^2\,\bigg [\,\frac{\partial ^2}{\partial r^2}+\frac{2}{r}\,\frac{\partial }{\partial r}\,\bigg ]\Bigg )\,{\mathscr {G}}_0(r,r')=\delta (r-r')\quad \text{ for }\quad 0\le r\quad \text{ and }\quad 0\le r'\,, \end{aligned}$$
(A-3)

and satisfies the conditions,

$$\begin{aligned}&\underset{r\rightarrow \,\infty }{\lim }\ {\mathscr {G}}_0(r,r')=0\,, \end{aligned}$$
(A-4a)
$$\begin{aligned}&\underset{r\rightarrow \,\infty }{\lim }\ \dfrac{\partial }{\partial r}{\mathscr {G}}_0(r,r')=0\,. \end{aligned}$$
(A-4b)

Accordingly, one can readily conclude from Eq. (A-2) that

$$\begin{aligned} \Theta _0(r)=\frac{\epsilon _0}{r^2}\int _0^{R_0}\!{\mathscr {G}}_0(r',r)\,r'^2\,\mathrm{d}r'\,. \end{aligned}$$
(A-5)

Hence, the determination of the expression for \(\Theta _0(r)\) requires to obtain the solution of the Green’s function. To this end, let us re-express Eq. (A-3) as

$$\begin{aligned} \Bigg (1-\ell _4^2\,\bigg [\,\frac{\partial ^2}{\partial r^2}+\frac{2}{r}\,\frac{\partial }{\partial r}\,\bigg ]\Bigg )\,{\mathscr {G}}_0(r,r')=\left\{ \begin{array}{ll} 0&{}\quad 0\le r<r'\,,\\[7pt] 0&{}\quad 0\le r'<r\,.\end{array}\right. \end{aligned}$$
(A-6)

Then, it is appropriate to consider the following general expressions for the solution of the above equation.

$$\begin{aligned} {\mathscr {G}}_0(r,r')=\left\{ \begin{array}{ll} \dfrac{A_1}{r}\,\exp \!\left( \dfrac{r}{\ell _4}\right) +\dfrac{A_2}{r}\,\exp \!\left( \!-\dfrac{r}{\ell _4}\right) &{}0\le r<r'\,,\\ \dfrac{A_3}{r}\,\exp \!\left( \dfrac{r}{\ell _4}\right) +\dfrac{A_4}{r}\,\exp \!\left( \!-\dfrac{r}{\ell _4}\right) &{}0\le r'<r\,,\end{array}\right. \end{aligned}$$
(A-7)

where \(A_1\), \(A_2\), \(A_3\), and \(A_4\) are unknown constants that must be determined by applying a set of proper conditions. First of all, note that the Green’s function \({\mathscr {G}}_0(r,r')\) must have bounded values over its entire domain, particularly at \(r=0\) and \(\infty \). Thus,

$$\begin{aligned} A_1+A_2&=0\,, \end{aligned}$$
(A-8a)
$$\begin{aligned} A_3&=0\,. \end{aligned}$$
(A-8b)

Let us mention here that setting \(A_3=0\) satisfies both conditions given by Eqs. (A-4a) and (A-4b). Moreover, note that the Green’s function \({\mathscr {G}}_0(r,r')\) must be continuous at \(r=r'\). The latter condition in view of the expressions given by Eq. (A-7) and using Eqs. (A-8) results in

$$\begin{aligned} 2\,A_1\,\sinh \!\left( \frac{r'}{\ell _4}\right) -A_4\,\exp \!\left( \!-\dfrac{r'}{\ell _4}\right) =0\,. \end{aligned}$$
(A-9)

Furthermore, by integrating both sides of Eq. (A-3) from \(r'-\delta r'\) to \(r'+\delta r'\) with respect to r and, then, taking their limits as \(\delta r'\rightarrow 0^+\), it is obtained that

$$\begin{aligned} \lim _{\delta r'\rightarrow \,0^+}\Bigg \{\,\int _{r'-\delta r'}^{\,r'+\delta r'}{\mathscr {G}}_0(r,r')\,\mathrm{d}r&-\ell _4^2\int _{r'-\delta r'}^{\,r'+\delta r'}\frac{\partial ^2}{\partial r^2}{\mathscr {G}}_0(r,r')\,\mathrm{d}r -2\,\ell _4^2\int _{r'-\delta r'}^{\,r'+\delta r'}\frac{1}{r}\,\frac{\partial }{\partial r}{\mathscr {G}}_0(r,r')\,\mathrm{d}r\Bigg \}=1\,. \end{aligned}$$
(A-10)

After evaluating the second integral on the left-hand side of the above equation in conjunction with expanding the last integral by integration by parts, one can write

$$\begin{aligned} \lim _{\delta r'\rightarrow \,0^+}\left\{ \,\int _{r'-\delta r'}^{\,r'+\delta r'}\bigg (1-2\,\frac{\ell _4^2}{r^2}\bigg )\,{\mathscr {G}}_0(r,r')\,\mathrm{d}r-\ell _4^2\,\left[ \,\frac{\partial }{\partial r}{\mathscr {G}}_0(r,r')+\frac{2}{r}\,{\mathscr {G}}_0(r,r')\right] \!\bigg |_{\,r'-\delta r'}^{\,r'+\delta r'}\right\} =1\,. \end{aligned}$$
(A-11)

With due attention to the continuity of the Green’s function \({\mathscr {G}}_0(r,r')\) at \(r=r'\), the above equation reduces to

$$\begin{aligned} \lim _{\delta r'\rightarrow \,0^+}\left[ \,\frac{\partial }{\partial r}{\mathscr {G}}_0(r,r')\right] \!\bigg |_{\,r'-\delta r'}^{\,r'+\delta r'}=-\frac{1}{\ell _4^2}\,. \end{aligned}$$
(A-12)

Thereafter, using Eqs. (A-7) and (A-8), it can be shown that

$$\begin{aligned} 2\,A_1\,\frac{\ell _4}{r'}\left[ \,\cosh \!\left( \frac{r'}{\ell _4}\right) -\frac{\ell _4}{r'}\,\sinh \!\left( \frac{r'}{\ell _4}\right) \right] +A_4\,\frac{\ell _4}{r'}\left[ \,1+\frac{\ell _4}{r'}\right] \exp \!\left( \!-\dfrac{r'}{\ell _4}\right) =1\,. \end{aligned}$$
(A-13)

Then, solving Eqs. (A-9) and (A-13) for \(A_1\) and \(A_4\) leads to

$$\begin{aligned} A_1&=\frac{r'}{2\,\ell _4}\,\exp \!\left( \!-\dfrac{r'}{\ell _4}\right) , \end{aligned}$$
(A-14a)
$$\begin{aligned} A_4&=\frac{r'}{\ell _4}\,\sinh \!\left( \dfrac{r'}{\ell _4}\right) . \end{aligned}$$
(A-14b)

Using the above results together with Eqs. (A-8), the Green’s function \({\mathscr {G}}_0(r,r')\) takes the following final form.

$$\begin{aligned} {\mathscr {G}}_0(r,r')=\frac{r'}{r\,\ell _4}\,\Bigg [\,H\big (r'-r\big )\,\exp \!\left( \!-\frac{r'}{\ell _4}\right) \,\sinh \!\left( \frac{r}{\ell _4}\right) +H\big (r-r'\big )\,\exp \!\left( \!-\frac{r}{\ell _4}\right) \,\sinh \!\left( \frac{r'}{\ell _4}\right) \!\Bigg ]\,. \end{aligned}$$
(A-15)

Subsequently, by the substitution of the expression for \({\mathscr {G}}_0(r,r')\) from the above equation into Eq. (A-5), it is obtained that

$$\begin{aligned} \Theta _0(r)=&\,\epsilon _0\,H\big (R_0-r\big ) +\frac{\epsilon _0}{2}\left( \frac{\ell _4}{r}+\frac{R_0}{r}\right) \Bigg [\exp \!\left( \!-\frac{r+R_0}{\ell _4}\right) -H\big (R_0-r\big )\,\exp \!\left( \frac{r-R_0}{\ell _4}\right) \!\Bigg ]\nonumber \\&-\frac{\epsilon _0}{2}\,H\big (r-R_0\big )\left( \frac{\ell _4}{r}-\frac{R_0}{r}\right) \exp \!\left( \!-\frac{r-R_0}{\ell _4}\right) . \end{aligned}$$
(A-16)

Likewise, it can be shown that the Green’s function problem corresponding to Eq. (34b) is expressible as

$$\begin{aligned} \Bigg (1-\ell _4^2\bigg [\,\frac{\partial ^2}{\partial r^2}+\frac{2}{r}\,\frac{\partial }{\partial r}\,\bigg ]\Bigg )\,{\mathscr {G}}_1(r,r';t)=\delta (r-r')\quad \text{ for }\quad 0\le r\le R_{\mathrm{m}}(t)\quad \text{ and }\quad 0\le r'\le R_{\mathrm{m}}(t)\,, \end{aligned}$$
(A-17)

where \({\mathscr {G}}_1(r,r';t)\) is the Green’s function associated with the function \(\Theta _1(r;t)\). The Green’s function \({\mathscr {G}}_1(r,r';t)\) must, similarly, be continuous at \(r=r'\), and it must also have a bounded value at \(r=0\). Furthermore, it must vanish at \(r=R_{\mathrm{m}}(t)\), where \(R_{\mathrm{m}}(t)\) has formerly been defined by Eq. (35). By applying these conditions to Eq. (A-17), the below-given solution is, thus, obtained for \({\mathscr {G}}_1(r,r';t)\).

$$\begin{aligned} {\mathscr {G}}_1(r,r';t)=&\,\frac{r'}{2\,r\,\ell _4}\,\mathrm{csch}\!\left( \frac{R_{\mathrm{m}}(t)}{\ell _4}\right) \Bigg [\,H\big (r'-r\big )\,\Bigg \{\cosh \!\left( \frac{r-r'+R_{\mathrm{m}}(t)}{\ell _4}\right) -\cosh \!\left( \frac{r+r'-R_{\mathrm{m}}(t)}{\ell _4}\right) \!\Bigg \}\nonumber \\&+H\big (r-r'\big )\,\Bigg \{\cosh \!\left( \frac{r-r'-R_{\mathrm{m}}(t)}{\ell _4}\right) -\cosh \!\left( \frac{r+r'-R_{\mathrm{m}}(t)}{\ell _4}\right) \!\Bigg \}\Bigg ]\,. \end{aligned}$$
(A-18)

Now, the function \(\Theta _1(r;t)\) can similarly be obtained in terms of its associated Green’s function via

$$\begin{aligned} \Theta _1(r;t)=\frac{\epsilon _0}{r^2}\,\int _{R_0}^{R(t)}\!{\mathscr {G}}_1(r',r;t)\,r'^2\,\mathrm{d}r'\,. \end{aligned}$$
(A-19)

Subsequently, by substituting Eq. (A-18) into the above integral, it can be shown that

$$\begin{aligned} \Theta _1(r;t)=&\,\epsilon _0\,H\big (r-R_0\big )\,H\big (R(t)-r\big )\nonumber \\&+\frac{\epsilon _0}{2}\,\mathrm{csch}\!\left( \frac{R_{\mathrm{m}}(t)}{\ell _4}\right) \frac{\ell _4}{r}\,\Bigg \{H\big (R_0-r\big )\Bigg [\cosh \!\left( \frac{r-R_0+R_{\mathrm{m}}(t)}{\ell _4}\right) +\frac{R_0}{\ell _4}\,\sinh \!\left( \frac{r-R_0+R_{\mathrm{m}}(t)}{\ell _4}\right) \!\Bigg ]\nonumber \\&-H\big (R(t)-r\big )\Bigg [\cosh \!\left( \frac{r-R(t)+R_{\mathrm{m}}(t)}{\ell _4}\right) +\frac{R(t)}{\ell _4}\,\sinh \!\left( \frac{r-R(t)+R_{\mathrm{m}}(t)}{\ell _4}\right) \!\Bigg ]\nonumber \\&+H\big (r-R_0\big )\,H\big (R_{\mathrm{m}}(t)-r\big )\Bigg [\cosh \!\left( \frac{r-R_0-R_{\mathrm{m}}(t)}{\ell _4}\right) +\frac{R_0}{\ell _4}\,\sinh \!\left( \frac{r-R_0-R_{\mathrm{m}}(t)}{\ell _4}\right) \!\Bigg ]\nonumber \\&-H\big (r-R(t)\big )\,H\big (R_{\mathrm{m}}(t)-r\big )\Bigg [\cosh \!\left( \frac{r-R(t)-R_{\mathrm{m}}(t)}{\ell _4}\right) +\frac{R(t)}{\ell _4}\,\sinh \!\left( \frac{r-R(t)-R_{\mathrm{m}}(t)}{\ell _4}\right) \!\Bigg ]\nonumber \\&-H\big (R_{\mathrm{m}}(t)-r\big )\Bigg [\cosh \!\left( \frac{r+R_0-R_{\mathrm{m}}(t)}{\ell _4}\right) -\frac{R_0}{\ell _4}\,\sinh \!\left( \frac{r+R_0-R_{\mathrm{m}}(t)}{\ell _4}\right) \nonumber \\&-\cosh \!\left( \frac{r+R(t)-R_{\mathrm{m}}(t)}{\ell _4}\right) +\frac{R(t)}{\ell _4}\,\sinh \!\left( \frac{r+R(t)-R_{\mathrm{m}}(t)}{\ell _4}\right) \!\Bigg ]\,. \end{aligned}$$
(A-20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delfani, M.R., Tarvirdilu-Asl, A. & Sajedipour, M. Elastic fields due to a suddenly expanding spherical inclusion within Mindlin’s first strain-gradient theory. Continuum Mech. Thermodyn. 34, 697–719 (2022). https://doi.org/10.1007/s00161-022-01084-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01084-w

Keywords

Navigation