Skip to main content
Log in

Astragalus Polysaccharides Reduce High-glucose-induced Rat Aortic Endothelial Cell Senescence and Inflammasome Activation by Modulating the Mitochondrial Na+/Ca2+ Exchanger

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Vascular endothelial cells play a vital role in atherosclerotic changes and the progression of cardiovascular disease in older adults. Previous studies have indicated that Astragalus polysaccharides (APS), a main active component of the traditional Chinese medicine Astragalus, protect mitochondria and exert an antiaging effect in the mouse liver and brain. However, the effect of APS on rat aortic endothelial cell (RAEC) senescence and its underlying mechanism have not been investigated. In this study, we extracted RAECs from 2-month-old male Wistar rats by the tissue explant method and found that APS ameliorated the high-glucose-induced increase in the frequency of SA-β-Gal positivity and the levels of the senescence-related proteins p16, p21, and p53. APS increased the tube formation capacity of RAECs under high-glucose conditions. Moreover, APS enhanced the expression of the mitochondrial Na+/Ca2+ exchanger NCLX, and knockdown of NCLX by small interfering RNA (siRNA) transfection suppressed the antiaging effect of APS under high-glucose conditions. Additionally, APS ameliorated RAEC mitochondrial dysfunction, including increasing ATP production, cytochrome C oxidase activity and the oxygen consumption rate (OCR), and inhibited high-glucose-induced NLRP3 inflammasome activation and IL-1β release, which were reversed by siNCLX. These results indicate that APS reduces high-glucose-induced inflammasome activation and ameliorates mitochondrial dysfunction and senescence in RAECs by modulating NCLX. Additionally, APS enhanced the levels of autophagy-related proteins (LC3B-II/I, Atg7) and increased the quantity of autophagic vacuoles under high-glucose conditions. Therefore, these data demonstrate that APS may reduce vascular endothelial cell inflammation and senescence through NCLX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

APS:

Astragalus polysaccharides

RAECs:

Rat aortic endothelial cells

SA-β-gal:

Senescence-associated β-galactosidase

IL-1β:

Interleukin-1β

CVD:

Cardiovascular diseases

ROS:

Reactive oxygen species

NLRP3:

NOD-like receptor family pyrin domain-containing 3

ECL:

Enhanced chemiluminescence

IgG:

Immunoglobulin G

Con:

Control

HG:

High glucose

ATP:

Adenosine triphosphate

COX:

Cytochrome c oxidase

OCR:

Oxygen consumption rate

FCCP:

carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

Atg:

Autophagy

References

  1. Theodorou, K., & Boon, R. A. (2018). Endothelial cell metabolism in atherosclerosis. Frontiers in Cell and Developmental Biology, 6, 82.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Das, A., Huang, G. X., Bonkowski, M. S., Longchamp, A., Li, C., Schultz, M. B., Kim, L. J., Osborne, B., Joshi, S., Lu, Y., Treviño-Villarreal, J. H., Kang, M. J., Hung, T. T., Lee, B., Williams, E. O., Igarashi, M., Mitchell, J. R., Wu, L. E., Turner, N., Arany, Z., Guarente, L., & Sinclair, D. A. (2019). Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell, 176, 944–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. E, S., Kijima, R., Honma, T., Yamamoto, K., Hatakeyama, Y., Kitano, Y., Kimura, T., Nakagawa, K., Miyazawa, T., & Tsuduki, T. (2014). 1-Deoxynojirimycin attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells. Experimental Gerontology, 55, 63–69.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, Q., Gao, C., & Cui, Z. (2015). Ginkgolide A reduces inflammatory response in high-glucose-stimulated human umbilical vein endothelial cells through STAT3-mediated pathway. International Immunopharmacology, 25, 242–248.

    Article  CAS  PubMed  Google Scholar 

  5. Carafoli, E., Tiozzo, R., Lugli, G., Crovetti, F., & Kratzing, C. (1974). The release of calcium from heart mitochondria by sodium. Journal of Molecular and Cellular Cardiology, 6, 361–371.

    Article  CAS  PubMed  Google Scholar 

  6. Palty, R., Silverman, W. F., Hershfinkel, M., Caporale, T., Sensi, S. L., Parnis, J., Nolte, C., Fishman, D., Shoshan-Barmatz, V., Herrmann, S., Khananshvili, D., & Sekler, I. (2010). NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proceedings of the National Academy of Sciences of the United States of America, 107, 436–441.

  7. Zu, Y., Wan, L. J., Cui, S. Y., Gong, Y. P., & Li, C. L. (2015). The mitochondrial Na+/Ca2+ exchanger may reduce high glucose-induced oxidative stress and nucleotide-binding oligomerization domain receptor 3 inflammasome activation in endothelial cells. Journal of Geriatric Cardiology, 12, 270–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, P., Zhao, H., & Luo, Y. (2017). Anti-aging implications of Astragalus Membranaceus (Huangqi): a well-known Chinese tonic. Aging and Disease, 8, 868–886.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang, W. M., Liang, Y. Q., Tang, L. J., Ding, Y. & Wang, X. H. (2013). Antioxidant and anti-inflammatory effects of Astragalus polysaccharide on EA.hy926 cells. Experimental and Therapeutic Medicine., 6, 199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, L. P., Shen, J. G., Xu, W. C., Li, J., & Jiang, J. Q. (2013). Secondary metabolites of the genus Astragalus: structure and biological-activity update. Chemistry & Biodiversity,, 10, 1004–1054.

    Article  CAS  Google Scholar 

  11. Zhou, Y., Hong, T., Tong, L., Liu, W., Yang, X., Luo, J., & Yan, L. (2018). Astragalus polysaccharide combined with 10-hydroxycamptothecin inhibits metastasis in non-small cell lung carcinoma cell lines via the MAP4K3/mTOR signaling pathway. International Journal of Molecular Medicines, 42(6), 3093–3104.

    CAS  Google Scholar 

  12. Sun, S., Yang, S., Dai, M., Jia, X., Wang, Q., Zhang, Z., & Mao, Y. (2017). The effect of Astragalus polysaccharides on attenuation of diabetic cardiomyopathy through inhibiting the extrinsic and intrinsic apoptotic pathways in high glucose -stimulated H9C2 cells. BMC Complementary Alternative Medicines, 17(1), 310.

    Article  CAS  Google Scholar 

  13. Wang, P., Zhang, Z., Ma, X., Huang, Y., Liu, X., Tu, P., & Tong, T. (2003). HDTIC-1 and HDTIC-2, two compounds extracted from Astragali Radix, delay replicative senescence of human diploid fibroblasts. Mechanisms of Ageing and Development, 124, 1025–1034.

    Article  CAS  PubMed  Google Scholar 

  14. Li, X. T., Zhang, Y. K., Kuang, H. X., Jin, F. X., Liu, D. W., Gao, M. B., Liu, Z., & Xin, X. J. (2012). Mitochondrial protection and anti-aging activity of Astragalus polysaccharides and their potential mechanism. International Journal of Molecular Sciences, 13, 1747–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, F., Yan, G., Li, Y., Han, Z., Zhang, L., Chen, S., Feng, C., Huang, Q., Ding, F., Yu, Y., Bi, C., Cai, B., & Yang, L. (2016). Astragalus polysaccharide attenuated iron overload-induced dysfunction of mesenchymal stem cells via suppressing mitochondrial ROS. Cellular Physiology and Biochemistry, 39, 1369–1379.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, X. X., Miao, X. Y., Gong, Y. P., Fu, B., & Li, C. L. (2019). Isolation and culture of rat aortic endothelial cells in vitro: a novel approach without collagenase digestion. Journal of Cellular Biochemistry, 120, 14127–14135.

    Article  CAS  PubMed  Google Scholar 

  17. Yau, W. W., Singh, B. K., Lesmana, R., Zhou, J., Sinha, R. A., Wong, K. A., Wu, Y., & Yen, P. M. (2019). Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy, 15, 131–150.

    Article  CAS  PubMed  Google Scholar 

  18. Miao, X., Gu, Z., Liu, Y., Jin, M., Lu, Y., Gong, Y., Li, L., & Li, C. (2018). The glucagon-like peptide-1 analogue liraglutide promotes autophagy through the modulation of 5’-AMP-activated protein kinase in INS-1 β-cells under high glucose conditions. Peptides, 100, 127–139.

    Article  CAS  PubMed  Google Scholar 

  19. Weinberg, R. A. (1995). The retinoblastoma protein and cell cycle control. Cell, 81, 323–330.

    Article  CAS  PubMed  Google Scholar 

  20. Morgan, R. G., Ives, S. J., Lesniewski, L. A., Cawthon, R. M., Andtbacka, R. H., Noyes, R. D., Richardson, R. S., & Donato, A. J. (2013). Age-related telomere uncapping is associated with cellular senescence and inflammation independent of telomere shortening in human arteries. American Journal of Physiology-Heart and Circulatory Physiology, 305, H251–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldberg, E. L., & Dixit, V. D. (2015). Drivers of age-related inflammation and strategies for healthspan extension. Immunological Reviews, 265, 63–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yin, Y., Zhou, Z., Liu, W., Chang, Q., Sun, G., & Dai, Y. (2017). Vascular endothelial cells senescence is associated with NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation via reactive oxygen species (ROS)/thioredoxin-interacting protein (TXNIP) pathway. The International Journal of Biochemistry & Cell Biology, 84, 22–34.

    Article  CAS  Google Scholar 

  23. Vion, A. C., Kheloufi, M., Hammoutene, A., Poisson, J., Lasselin, J., Devue, C., Pic, I., Dupont, N., Busse, J., Stark, K., Lafaurie-Janvore, J., Barakat, A. I., Loyer, X., Souyri, M., Viollet, B., Julia, P., Tedgui, A., Codogno, P., Boulanger, C. M., & Rautou, P. E. (2017). Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proceedings of the National Academy of Sciences of the United States of America, 114, E8675–E8684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi, A. M., Ryter, S. W., & Levine, B. (2013). Autophagy in human health and disease. The New England Journal of Medicine, 368, 651–662.

    Article  CAS  PubMed  Google Scholar 

  25. Molyneux, R. J., & James, L. F. (1982). Loco intoxication: indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus). Science, 216, 190–191.

    Article  CAS  PubMed  Google Scholar 

  26. Lai, M., Wang, J., Tan, J., Luo, J., Zhang, L. M., Deng, D. Y., & Yang, L. (2017). Preparation, complexation mechanism and properties of nano-complexes of Astragalus polysaccharide and amphiphilic chitosan derivatives. Carbohydrate Polymers, 161, 261–269.

    Article  CAS  PubMed  Google Scholar 

  27. Song, J., Chen, M., Li, Z., Zhang, J., Hu, H., Tong, X., & Dai, F. (2019). Astragalus polysaccharide extends lifespan via mitigating endoplasmic reticulum stress in the Silkworm, Bombyx mori. Aging & Disease, 10(6), 1187–1198.

    Article  Google Scholar 

  28. Wang, N., Liu, J., Xie, F., Gao, X., Ye, J. H., Sun, L. Y., Wei, R., & Ai, J. (2015). miR-124/ATF-6, a novel lifespan extension pathway of Astragalus polysaccharide in Caenorhabditis elegans. Journal of Cellular Biochemistry, 116, 242–251.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, H., Pan, N., Xiong, S., Zou, S., Li, H., Xiao, L., Cao, Z., Tunnacliffe, A., & Huang, Z. (2012). Inhibition of polyglutamine-mediated proteotoxicity by Astragalus membranaceus polysaccharide through the DAF-16/FOXO transcription factor in Caenorhabditis elegans. Biochemical Journal,, 441, 417–424.

    Article  CAS  Google Scholar 

  30. Childs, B. G., Bussian, T. J., & Baker, D. J. (2019). Cellular identification and quantification of senescence-associated β-galactosidase activity in vivo. Methods in Molecular Biology, 1896, 31–38.

    Article  CAS  PubMed  Google Scholar 

  31. Campisi, J. (2013). Aging, cellular senescence, and cancer. The Annual Review of Physiology, 75, 685–705.

    Article  CAS  PubMed  Google Scholar 

  32. Khananshvili, D. (2013). The SLC8 gene family of sodium-calcium exchangers (NCX) - structure, function, and regulation in health and disease. Molecular Aspects of Medicine, 34, 220–235.

    Article  CAS  PubMed  Google Scholar 

  33. Takeuchi, A., Kim, B., & Matsuoka, S. (2013). The mitochondrial Na+-Ca2+ exchanger, NCLX, regulates automaticity of HL-1 cardiomyocytes. Scientific Reports, 3, 2766.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chistiakov, D. A., Sobenin, I. A., Revin, V. V., Orekhov, A. N., & Bobryshev, Y. V. (2014). Mitochondrial aging and age-related dysfunction of mitochondria. BioMed Research International, 2014, 238463.

    PubMed  PubMed Central  Google Scholar 

  35. Broniarek, I., Dominiak, K., Galganski, L., & Jarmuszkiewicz, W. (2020). The influence of statins on the aerobic metabolism of endothelial cells. International Journal of Molecular Sciences, 21, 1485.

    Article  CAS  PubMed Central  Google Scholar 

  36. Zhu, W., Yuan, Y., Liao, G., Li, L., Liu, J., Chen, Y., Zhang, J., Cheng, J., & Lu, Y. (2018). Mesenchymal stem cells ameliorate hyperglycemia-induced endothelial injury through modulation of mitophagy. Cell Death & Disease, 9, 837.

    Article  CAS  Google Scholar 

  37. Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V., & Semenza, G. L. (2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129, 111–122.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, D., Sankaramoorthy, A., & Roy, S. (2020). Downregulation of Drp1 and Fis1 Inhibits mitochondrial fission and prevents high glucose-Induced apoptosis in retinal endothelial cells. Cells, 9, 1662.

    Article  CAS  PubMed Central  Google Scholar 

  39. Donato, A. J., Morgan, R. G., Walker, A. E., & Lesniewski, L. A. (2015). Cellular and molecular biology of aging endothelial cells. Journal of Molecular and Cellular Cardiology, 89, 122–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Donato, A. J., Machin, D. R., & Lesniewski, L. A. (2018). Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circulation Research, 123, 825–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Y., Shi, S., Gu, Z., Du, Y., Liu, M., Yan, S., Gao, J., Li, J., Shao, Y., Zhong, W., Chen, X., & Li, C. (2013). Impaired autophagic function in rat islets with aging. Age, 35, 1531–1544.

    Article  CAS  PubMed  Google Scholar 

  42. Meng, Q., Du, X., Wang, H., Gu, H., Zhan, J., & Zhou, Z. (2017). Astragalus polysaccharides inhibits cell growth and pro-inflammatory response in IL-1β-stimulated fibroblast-like synoviocytes by enhancement of autophagy via PI3K/AKT/mTOR inhibition. Apoptosis, 22, 1138–1146.

    Article  CAS  PubMed  Google Scholar 

  43. Cao, Y., Shen, T., Huang, X., Lin, Y., Chen, B., Pang, J., Li, G., Wang, Q., Zohrabian, S., Duan, C., Ruan, Y., Man, Y., Wang, S., & Li, J. (2017). Astragalus polysaccharide restores autophagic flux and improves cardiomyocyte function in doxorubicin-induced cardiotoxicity. Oncotarget, 8, 4837–4848.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to all the researchers at the Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases. This study was supported by grants from the National Natural Science Foundation of China (No. 81774119, 81300265, 81900765); Special Scientific Research Project of Military Healthcare (19BJZ29), and Beijing Haidian District Health Development Research and Cultivation Program (No. HP2021-03-80303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Ping Gong or Chun-Lin Li.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, XY., Zhu, XX., Gu, ZY. et al. Astragalus Polysaccharides Reduce High-glucose-induced Rat Aortic Endothelial Cell Senescence and Inflammasome Activation by Modulating the Mitochondrial Na+/Ca2+ Exchanger. Cell Biochem Biophys 80, 341–353 (2022). https://doi.org/10.1007/s12013-021-01058-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01058-w

Keywords

Navigation