skip to main content
research-article

Accelerating Video Analytics

Published:31 January 2022Publication History
Skip Abstract Section

Abstract

MOTIVATION. The advent of inexpensive, high-quality cameras has led to a rapid increase in the volume of generated video data [19, 16]. It is now feasible to automatically analyze these video datasets at scale due to two developments over the last decade. First, researchers have designed complex, computationally-intensive deep learning (DL) models that capture the contents of a given set of video frames (e.g., objects present in a particular frame [11]) [15]. Second, the computational capabilities of hardware accelerators for evaluating these DL models have increased over the last decade (e.g., TPUs) [8]. We anticipate that automated analysis of videos will reduce the labor cost of analyzing video

References

  1. BlazeIt. https://github.com/stanford-futuredata/blazeit.Google ScholarGoogle Scholar
  2. EVA. https://github.com/georgia-tech-db/Eva.Google ScholarGoogle Scholar
  3. J. Bang, P. Chunduri, and J. Arulraj. Eko: Adaptive sampling of compressed video data. arXiv preprint arXiv:2104.01671, 2021.Google ScholarGoogle Scholar
  4. F. Bastani, S. He, A. Balasingam, K. Gopalakrishnan, M. Alizadeh, H. Balakrishnan, M. Cafarella, T. Kraska, and S. Madden. Miris: Fast object track queries in video. In SIGMOD, pages 1907--1921, 2020. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Cao, R. Hadidi, J. Arulraj, and H. Kim. Thia: Accelerating video analytics using early inference and fine-grained query planning. arXiv preprint arXiv:2102.08481, 2021.Google ScholarGoogle Scholar
  6. Y.-W. Chao, S. Vijayanarasimhan, B. Seybold, D. A. Ross, J. Deng, and R. Sukthankar. Rethinking the faster r-cnn architecture for temporal action localization. In CVPR, pages 1130--1139, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. Chunduri, J. Bang, Y. Lu, and J. Arulraj. Zeus: Efficiently localizing actions in videos using reinforcement learning. arXiv preprint arXiv:2104.06142, 2021.Google ScholarGoogle Scholar
  8. J. Dean, D. Patterson, and C. Young. A new golden age in computer architecture: Empowering the machine-learning revolution. IEEE Micro, 38(2):21--29, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  9. B. Haynes, M. Daum, A. Mazumdar, M. Balazinska, A. Cheung, and L. Ceze. Visualworlddb: A dbms for the visual world. In CIDR, 2020.Google ScholarGoogle Scholar
  10. D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. Noscope: Optimizing neural network queries over video at scale. arXiv: Databases, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. SSD: Single shot multibox detector. In ECCV, pages 21--37. Springer, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  12. Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri. Accelerating machine learning inference with probabilistic predicates. In SIGMOD, pages 1493--1508, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri. Accelerating machine learning inference with probabilistic predicates. In SIGMOD, pages 1493--1508, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Rolnick, P. L. Donti, L. H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran, A. S. Ross, N. Milojevic-Dupont, N. Jaques, and A. Waldman-Brown. Tackling climate change with machine learning. arXiv preprint arXiv:1906.05433, 2019.Google ScholarGoogle Scholar
  15. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein. Imagenet large scale visual recognition challenge. IJCV, 115(3):211--252, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. T. J. Sejnowski. The deep learning revolution. MIT press, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Z. Shou, D. Wang, and S.-F. Chang. Temporal action localization in untrimmed videos via multi-stage cnns. In CVPR, pages 1049--1058, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. Suprem, J. Arulraj, C. Pu, and J. Ferreira. Odin: Automated drift detection and recovery in video analytics. VLDB, 13(11), 2020. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis. Deep learning for computer vision: A brief review. Computational intelligence and neuroscience, 2018, 2018.Google ScholarGoogle Scholar
  20. H. Xia and Y. Zhan. A survey on temporal action localization. IEEE Access, 8:70477--70487, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  21. Y. Zhang and A. Kumar. Panorama: a data system for unbounded vocabulary querying over video. VLDB, 13(4):477--491, 2019. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Accelerating Video Analytics
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Article Metrics

      • Downloads (Last 12 months)36
      • Downloads (Last 6 weeks)5

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader