Skip to main content
Log in

Twistor Operators in Symplectic Geometry

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

On a symplectic manifold equipped with a symplectic connection and a metaplectic structure, we define two families of sequences of differential operators, called the symplectic twistor operators. We prove that if the connection is torsion-free and Weyl-flat, the sequences in these families form complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cahen, M., Gutt, S., La Fuente Gravy, L., Rawnsley, J.: On \({M}p^c\) structures and symplectic Dirac operators. J. Geom. Phys. 85, 434–466 (2014). https://doi.org/10.1016/j.geomphys.2014.09.006

    Article  ADS  MATH  Google Scholar 

  2. Dixmier, J.: Enveloping algebras Graduate Studies in Mathematics. Amer. Math. Soc. (1996). https://doi.org/10.1090/gsm/011

    Article  Google Scholar 

  3. Friedrich, T.: Dirac operators in Riemannian geometry Graduate Series in Mathematics. Amer. Math. Soc. (2000). https://doi.org/10.1090/gsm/025

    Article  Google Scholar 

  4. Gelfand, I., Retakh, V., Shubin, M.: Fedosov manifolds. Adv. Math. 136(1), 104–140 (1998). https://doi.org/10.1006/aima.1998.1727

    Article  MathSciNet  MATH  Google Scholar 

  5. Ginoux, N.: The Dirac spectrum Lecture Notes in Mathematics, vol. 1976, Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01570-0

  6. Habermann, K.: The Dirac operator on symplectic spinors. Ann. Global Anal. Geom. 13(2), 155–168 (1995). https://doi.org/10.1007/BF01120331

    Article  MathSciNet  MATH  Google Scholar 

  7. Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators, Lecture Notes in Mathematics. Springer, Berlin-Heidelberg (2006). https://doi.org/10.1007/b138212

  8. Habermann, K., Klein, A.: Lie derivative of symplectic spinor fields, metaplectic representation, and quantization. Rostock. Math. Kolloq. 57, 71–91 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Howe, R.: The oscillator semigroup. In: R. Wells (ed.) The Mathematical Heritage of Hermann Weyl (Durham, North Carolina, 1987), Proc. Sympos. Pure Math., 48, pp. 61–132. Amer. Math. Soc., Providence, Rhode Island (1988). https://doi.org/10.1090/pspum/048

  10. Kirillov, A.: Lectures on the orbit method Graduate Studies in Mathematics. Amer. Math. Soc. (2004). https://doi.org/10.1090/gsm/064

    Article  Google Scholar 

  11. Knapp, A.: Lie group beyond an introduction. Progress in Mathematics, vol. 140. Birkhäuser Boston, Boston, Massachusetts (1996). https://doi.org/10.1007/978-1-4757-2453-0

  12. Kolář, I., Michor, P., Slovák, J.: Natural operators in differential geometry. Springer, Berlin (1993). https://doi.org/10.1007/978-3-662-02950-3

  13. Kostant, B.: Symplectic Spinors. Symposia Mathematica, vol. XIV, pp. 139–152. Academic Press (1974)

  14. Krýsl, S.: Symplectic spinor valued forms and operators acting between them. Arch. Math. (Brno) 42, 279–290 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Krýsl, S.: Complex of twistor operators in spin symplectic geometry. Monats. Math. 161, 381–398 (2010)

    Article  Google Scholar 

  16. Krýsl, S.: Howe duality for the metaplectic group acting on symplectic spinor valued forms. J. Lie Theory 22(4), 1049–1063 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Krýsl, S.: Symplectic spinors and Hodge theory. Habilitation thesis, Faculty of Mathematics and Physics, Charles University, Prague (CZE) (2017). http://hdl.handle.net/20.500.11956/94136

  18. Penrose, R.: Twistor algebra. J. Mathematical Phys. 8(2), 345–366 (1967). https://doi.org/10.1063/1.1705200

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Schmid, W.: Boundary value problems for group invariant differential equations. In: The Mathematical Heritage of Élie Cartan (Lyon, 1984), Numéro Hors Série 2, pp. 311–321. Société Mathématique de France, Astérisque (1985)

  20. Shale, D.: Linear symmetries of free boson fields. Trans. Amer. Math. Soc. 103, 149–167 (1962). https://doi.org/10.1090/S0002-9947-1962-0137504-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Sommen, F.: An extension of Clifford analysis towards super-symmetry. In: J. Ryan, J. Sprößig (eds.) Clifford algebras and their applications in mathematical physic, Vol. 2 (Ixtapa, 1999), Progr. Physics, 19, pp. 199–224. Birkhäuser Boston, Boston, Massachussetts (2000). https://doi.org/10.1007/978-1-4612-1374-1

  22. Sternberg, S.: Lectures on differential geometry. Prentice-Hall, Englewood Cliffs, New Jersey (1999)

  23. Tondeur, P.: Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur. Comment. Math. Helv. 36(3), 234–264 (1962)

    Article  MathSciNet  Google Scholar 

  24. Vaisman, I.: Symplectic curvature tensors. Monatsh. Math. 100, 299–327 (1985). https://doi.org/10.1007/BF01339231

    Article  MathSciNet  MATH  Google Scholar 

  25. Wallach, N.: Symplectic geometry and Fourier analysis. With an Appendix on Quantum Mechanics by Robert Hermann. Lie Groups: History, Frontiers and Applications, vol. V. Math. Sci. Press, Brookline, Massachusetts (1977)

  26. Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143–211 (1964). https://doi.org/10.1007/BF02391012

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svatopluk Krýsl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author thanks for financial supports from the founding No. 20-11473S granted by the Czech Science Foundation and from the institutional support program “Progres Q47” granted by the Charles University.

This article is part of the Topical Collection on Proceedings ICCA 12, Hefei, 2020, edited by Guangbin Ren, Uwe Kahler, Rafał Abłamowicz, Fabrizio Colombo, Pierre Dechant, Jacques Helmstetter, G. Stacey Staples, Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krýsl, S. Twistor Operators in Symplectic Geometry. Adv. Appl. Clifford Algebras 32, 14 (2022). https://doi.org/10.1007/s00006-022-01199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-022-01199-y

Keywords

Mathematics Subject Classification

Navigation