Skip to main content
Log in

Identifying Potential Earthquake Sources in Continental Environments

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript
AbstractSection Abstract

In this paper, we outline the overview of the problem of intraplate seismicity and summarize our studies aimed at identifying potential earthquake sources in three regions located in continental environments. We study the French Massif Central situated within the West-European platform, the Gujarat area located at the northwestern edge of the Indian shield, and northeast Egypt located in the northeastern part of the African continent. These regions exhibit different levels of seismic activity. The French Massif Central reveals the lowest rate of seismicity, northeast Egypt exposes a low-to-moderate seismicity, and Gujarat reveals moderate seismicity with rare occurrence of strong events. We use a phenomenological approach for identifying possible locations of earthquakes, which is based on the pattern recognition applied to morphostructural data. The approach hypothesizes the nucleation of strong earthquakes at morphostructural nodes forming at the intersections of morphostructural lineaments, which are delineated by morphostructural zoning. Nodes are characterized by the pertinent geophysical and geological parameters, on the basis of which pattern recognition algorithm pinpoints capable nodes, i.e., the nodes where events of a certain sizes may occur. Seismic hazard assessment of continental regions is impeded because their seismic history is normally very pure. In such a situation, information on capable nodes is a necessary input for seismic hazard assessment. The example of northeast Egypt shows the exploiting capable nodes to assess seismic hazard by the Neo-Deterministic Seismic Hazard Assessment Methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aki K (1979) Characterization of barriers on an earthquake fault. J Geophys Res 84:6140–6148

    Article  Google Scholar 

  • Alexeevskaya MA, Gabrielov AM, Gvishiani AD, Gelfand IM, Ya RE (1977) Formal morphostructural zoning of mountain territories. J Geophys 43:227–233

    Google Scholar 

  • Ambraseys N (2009) Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. University Press, Cambridge

    Book  Google Scholar 

  • Assumpcao M (1998) Seismicity and stresses in the Brazilian passive margin. Bull Seismol Soc Am 78(1):160–169

    Article  Google Scholar 

  • Assumpcao M, Sacek V (2013) Intra-plate seismicity and flexural stresses in central Brazil. Geophys Res Lett 40:1–5

    Article  Google Scholar 

  • Assumpcao M, Ferreira J, Barros L et al (2016) Intraplate seismicity in Brazil. In: Talwani P (ed) Intraplate earthquakes. Cambridge University Press, pp 50–71

    Google Scholar 

  • Assumpco M, Dourado JC, Ribotta LC et al (2011) The Sao Vicente earthquake of April 2008 and seismicity in the continental shelf off SE Brazil: further evidence for flexural stresses. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2011.05198.x

    Article  Google Scholar 

  • Audin L, Avouac J-P, Flouzat M, Plantet J-L (2002) Fluid-driven seismicity in a stable tectonic context: the Remiremont fault zone, Vosges. Geophys Res Lett. https://doi.org/10.1029/2001GL012988

    Article  Google Scholar 

  • Badawy A (1998) Earthquake hazard analysis in northern Egypt. Acta Geodaetica Et Geophysica Hungarica. https://doi.org/10.1007/BF03325544

    Article  Google Scholar 

  • Badawy A (2001) Status of the crustal stress in Egypt as inferred from earthquake focal mechanisms and borehole breakouts. Tectonophysics 343(1):49–61

    Article  Google Scholar 

  • Badawy A, ElGabry M, Girgis M (2010) Historical seismicity of Egypt. In: A study for previous catalogues producing revised weighted catalogue. The second Arab conference for astronomy and geophysics, Egypt

  • Baize S, Cushing M, Lemeille F et al (2002) Inventaire des indices de rupture affectant le Quaternaire en relation avec les grandes structures connues en France métropolitaine et dans les régions limitrophes. Mémoire De La Société Géologique De France 175:1–142

    Google Scholar 

  • Barenblatt G (1993) Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. J Fluid Mech. https://doi.org/10.1017/S0022112093000874

    Article  Google Scholar 

  • Bhatia SC, Ravi Kumar M, Gupta HK (1999) A probabilistic seismic hazard map of India and adjoining regions. Ann Geofis 42(6):1153–1166

    Google Scholar 

  • BIS (2002) IS 1893 (Part 1)-2002: Indian standard criteria for earthquake resistant design of structures, part 1—general provisions and buildings. Bureau of Indian Standards, New Delhi

  • Biswas SK (1974) Landscape of Kutch—a morphotectonic analysis. Ind J Earth Sci 1:177–190

    Google Scholar 

  • Biswas SK (1987) Regional framework, structure and evolution of the western marginal basins of India. Tectonophysics 135:302–327

    Article  Google Scholar 

  • Biswas SK (2005) A review of structure and tectonics of Kutch Basin, Western India, with special reference to earthquake. Curr Sci 88(10):15

    Google Scholar 

  • Bongard MM (1967) Problema uznavaniya (problem of recognition). Nauka, Moscow (in Russian)

    Google Scholar 

  • Calais E, Freed AM, Van Arsdale R, Stein S (2010) Triggering of New Madrid seismicity by late-Pleistocene erosion. Nature 466:608–611

    Article  Google Scholar 

  • Campbell DL (1978) Investigation of the stress concentration mechanism for intraplate earthquakes. Geophys Res Lett 5:477–479

    Article  Google Scholar 

  • Choudhury P, Chopra S, Ravi Kumar M (2018) A review of seismic hazard assessment of Gujarat: a highly active intra-plate region. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2018.09.014

    Article  Google Scholar 

  • Chung WY, Gao H (1995) Source parameters of the Anjar earthquake of July 21, 1956, India and its seismotectonic implications for the Kutch rift basin. Tectonophysics 242:281–292

    Article  Google Scholar 

  • Cloetingh S, Cornu T, Ziegler PA, Beekman F (2006) Neotectonics and intraplate continental topography of the northern Alpine Foreland. Earth Sci Rev 74:127–196

    Article  Google Scholar 

  • Courtillot V, Besse J, Vandamme D et al (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet Sci Lett 80:361–374

    Article  Google Scholar 

  • Cui P, Chen XQ, Zhu YY et al (2011) The Wenchuan earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards. Nat Hazards. https://doi.org/10.1007/s11069-009-9392-1

    Article  Google Scholar 

  • D’Amico V, Albarello D, Mantovani E (1999) A distribution-free analysis of magnitude-intensity relationships: an application to the Mediterranean region. Phys Chem Earth 24:517–521

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Effects of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 12:2191–2194

    Article  Google Scholar 

  • El-Fiky GS (2000) Crustal strains in the Eastern Mediterranean and Middle East as derived from GPS observations. Bull Earthq Res Inst Univ Tokyo 75:105–125

    Google Scholar 

  • El-Fiky G (2005) GPS-derived velocity and crustal strain field in the Suez-Sinai area, Egypt. Bull Earthq Res Inst Univ Tokyo 80:73–86

    Google Scholar 

  • ElGabry M, Hassan HM (2021) Updated seismic input for next generation of the Egyptian building code. In: Shehata H, El-Badawy S (eds) Sustainable issues in infrastructure engineering. Sustainable civil infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-62586-3_5

    Chapter  Google Scholar 

  • ElGabry MN, Panza GF, Badawy AA, Korrat IM (2013) Imaging a relic of complex tectonics: the lithosphere-asthenosphere structure in the Eastern Mediterranean. Terra Nova 25(2):102–109

    Article  Google Scholar 

  • Eppelbaum LV, Katz YI (2015) Eastern Mediterranean: combined geologicalegeophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural sedimentation stages. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2015.04.008

    Article  Google Scholar 

  • Froidevaux C, Brousse R, Bellon H (1974) Hot spot in France? Nature 248:749–751

    Article  Google Scholar 

  • Gangopadhyay A, Talwani P (2003) Symptomatic features of intraplate earthquakes. Seism Res Lett 74:863–883

    Article  Google Scholar 

  • Gelfand I, Guberman Sh, Izvekova M, Keilis-Borok V, Rantsman E (1972) Criteria of high seismicity, determined by pattern recognition. Tectonophysics 13:415–422

    Article  Google Scholar 

  • Gelfand IM, Guberman ShA, Keilis-Borok VI, Knopoff L, Press F, Ranzman EY, Rotwain IM, Sadovsky AM (1976) Pattern recognition applied to earthquake epicenters in California. Phys Earth Planet Inter 11:227–283

    Article  Google Scholar 

  • Geological Map of France (1996) 1:1,000,000. BRGM, Orlean

  • Gorshkov A, Gaudemer Y (2019) Seismogenic nodes defined with pattern recognition in the French Massif Central. J Iber Geol. https://doi.org/10.1007/s41513-018-0087-x

    Article  Google Scholar 

  • Gorshkov A, Novikova O (2018) Estimating the validity of the recognition results of earthquake prone areas using the ArcMap. Acta Geophys. https://doi.org/10.1007/s11600-018-0177

    Article  Google Scholar 

  • Gorshkov A, Soloviev A (2021) 7. Morphostructural zoning for identifying earthquake-prone areas. In: Panza GF, Kossobokov VG, Laor E, De Vivo B (eds) Earthquakes and sustainable infrastructure: neodeterministic (NDSHA) approach guarantees prevention rather than cure. Elsevier, pp 135–149

    Google Scholar 

  • Gorshkov A, Kossobokov V, Soloviev A (2003) Recognition of earthquake-prone areas. In: Keilis-Borok V, Soloviev A (eds) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer, Heidelberg, pp 239–310

    Chapter  Google Scholar 

  • Gorshkov AI, Panza GF, Soloviev AA, Aoudia A, Peresan A (2009) Delineation of the geometry of the nodes in the Alps-Dinarides hinge zone and recognition of seismogenic nodes (M ≥ 6.0). Terra Nova. https://doi.org/10.1111/j.1365-3121.2009.00879.x

    Article  Google Scholar 

  • Gorshkov A, Hassan H, Novikova O (2019) Seismogenic nodes (M ≥ 5.0) in north-east of Egypt and implication for seismic hazard assessment. Pure Appl Geophys. https://doi.org/10.1007/s00024-018-2012-9

    Article  Google Scholar 

  • Gorshkov A, Hassan HM, Novikova O (2016) Seismogenic nodes defined in north-east Egypt by the pattern recognition approach. In: 35th general assembly of the European seismological commission. September 2016, Trieste, Italy. http://meetingorganizer.copernicus.org/ESC2016/oral_program/22633

  • Granet M, Wilson M, Achauer U (1995) Imaging a mantle plume beneath the French Massif Central. Earth Planet Sci Lett 136:281–296

    Article  Google Scholar 

  • Grellet B, Combes P, Granier T, Philip H, Mohammadioun B (1993) Sismotectonique de la France Me´tropolitaine dans son cadre ge´ologique et ge´ophysique avec atlas de 23 cartes au 1/4.000.000 ie`me et une carte au 1/1.000.000ie`me. Mémoire de la société géologique de France 164(2):1–76

  • Gupta HK, Rao RUM, Srinivasan R et al (1999) Anatomy of surface rupture zones of two stable continental region earthquakes, 1967 Koyna and 1993 Latur, India. Geophys Res Lett 26(13):1985–1988

    Article  Google Scholar 

  • Gupta HK, Rao NP, Rastogi BK, Sarkar D (2001) The deadliest intraplate earthquake. Science 291:2101–2102

    Article  Google Scholar 

  • Gvishiani A, Gorshkov A, Rantsman E, Cisternas A, Soloviev A (1988) Identification of earthquake-prone-areas in the regions of moderate seismicity. Nauka, Moscow (in Russian)

    Google Scholar 

  • Hassan HM, Panza GF, Romanelli F, ElGabry MN (2017a) Insight on seismic hazard studies for Egypt. Eng Geol 220:99–109

    Article  Google Scholar 

  • Hassan HM, Romanelli F, Panza GF, ElGabry MN, Magrin A (2017b) Update and sensitivity analysis of the neo-deterministic seismic hazard assessment for Egypt. Eng Geol 218:77–89

    Article  Google Scholar 

  • Hassan HM, Gorshkov A, Novikova OV (2016). Recognition of seismogenic nodes (M > 5.0) in north-east of Egypt. In: The African seismological commission 1st general assembly, Luxor, Egypt

  • Hobbs WN (1911) Lineaments of the Atlantic border region. Bull Geol Soc Am 15:483–506

    Article  Google Scholar 

  • Jestin F, Huchon P, Gaulier JM (1994) The Somalia plate and the East African rift system: present-day kinematics. Geophys J Int 116(3):637–654

    Article  Google Scholar 

  • Johnston AC, Schweig ES (1996) The enigma of the New Madrid earthquakes of 1811–1812. Annu Rev Earth Planet Sci. https://doi.org/10.1146/annurev.earth.24.1.339

    Article  Google Scholar 

  • Johnston AC (1994) Seismotectonic interpretations and conclusions from the stable continental regions. In: The earthquakes of stable continental regions: assessment of large earthquake potential. Electric Power & Research Institute, Palo Alto, Report TR 10261 ch.3

  • Kane MF (1977) Correlation of major eastern earthquake centers with mafic/ultramafic basement masses. In: Rankin DW (ed) Studies related to the Charleston, South Carolina, earthquake of 1886—a preliminary report, U.S. Geol Surv Prof Pap 1028, 199–204

  • King G, Nabelek J (1985) Role of fault bends in the initiation and termination of earthquake rupture. Science. https://doi.org/10.1126/science.228.4702.984

    Article  Google Scholar 

  • Levandowski W, Zellman M, Briggs R (2017) Gravitational body forces focus North American intraplate earthquakes. Nat Commun. https://doi.org/10.1038/ncomms14314

    Article  Google Scholar 

  • Levret A, Back J-C, Cushing M (1994) Atlas of macroseismic maps for French earthquakes with their principal characteristics. Nat Hazards 10:19–46

    Article  Google Scholar 

  • Liu M, Stein S (2016) Mid-continental earthquakes: spatiotemporal occurrences, causes, and hazards. Earth Sci Rev 162:364–386

    Article  Google Scholar 

  • Long LT (1976) Speculations concerning southeastern earthquakes, mafic intrusions, gravity anomalies, and stress amplification. Earthq Notes 47:29–35

    Google Scholar 

  • Magrin A, Gusev AA, Romanelli F, Vaccari F, Panza GF (2016) Broadband NDSHA computations and earthquake ground motion observations for the Italian territory. Int J Earthq Impact Eng 1(1–2):131–158

    Article  Google Scholar 

  • Mahmoud SM (2002) Seismicity and GPS-derived crustal deformation in Egypt. J Geodyn 35:333–352

    Article  Google Scholar 

  • Mandal P (2019) A possible origin of intraplate earthquakes in the Kachchh rift zone, India, since the 2001 Mw7.7 Bhuj earthquake. J Asian Earth Sci 170:56–72

    Article  Google Scholar 

  • Mandal P (2020) Three-dimensional seismic velocity imaging of the Kachchh rift zone, Gujarat, India: implications toward the crustal mafic pluton induced intraplate seismicity. J Asian Earth Sci 192:1–7

    Article  Google Scholar 

  • Mandal P, Pujol J (2006) Seismic imaging of the aftershock zone of the 2001 Mw7.7 Bhuj earthquake. India Geophys Res Lett 33:1–4

    Google Scholar 

  • Mandal P, Rastogi BK, Satyanarayana HVS, Kousalya M (2004) Results from local earthquake velocity tomography: implications toward the source process involved in generating the 2001 Bhuj Earthquake in the Lower Crust beneath Kachchh (India). Bull Seism Soc Am 94(2):633–649

    Article  Google Scholar 

  • Marin S, Avouac J-P, Marc Nicolas M, Schlupp A (2004) A probabilistic approach to seismic hazard in metropolitan France. Bull Seismol Soc Am 94(6):2137–2163

    Article  Google Scholar 

  • Mazabraud Y, Be´thoux N, Deroussi S (2005) Characterisation of the seismological pattern in a slowly deforming intraplate region: Central and western France. Tectonophysics 409:175–192

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A et al (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res Solid Earth 105(B3):5695–5719

    Article  Google Scholar 

  • Merle O, Michon L (2001) The formation of the West European rift: a new model as exemplified by the Massif Central area. Bull Geol Soc Fr 172(2):213–221

    Article  Google Scholar 

  • Mohamed AEEA, El-Hadidy M, Deif A, Elenean KA (2012) Seismic hazard studies in Egypt. NRIAG J Astron Geophys. https://doi.org/10.1016/j.nrjag.2012.12.008

    Article  Google Scholar 

  • Nehlig P, Boivin P, de Go¨er de Herve A, Mergoil J, Prouteau G, Thi´eblemont D (2001) Les volcans du Massif central. G´eologue, 130–131: 66–91

  • Newman A, Stein S, Weber J et al (1999) Slow deformation and low seismic hazard at the New Madrid seismic zone. Science 284:619–621

    Article  Google Scholar 

  • Nicolas M, Santoire JP, Delpech PY (1990) Intraplate seismicity: new seismotectonic data in Western Europe. Tectonophysics 179:27–53

    Article  Google Scholar 

  • Nyblade AA, Langston CA (1995) East African earthquakes below 20 km depth and their implications for crustal structure. Geophys J Int 121:49–62

    Article  Google Scholar 

  • Panza GF, Bela J (2020) NDSHA: a new paradigm for reliable seismic hazard assessment. Eng Geol 2:3–9. https://doi.org/10.1016/j.enggeo.2019.105403

    Article  Google Scholar 

  • Panza GF, Romanelli F, Vaccari F (2001) Seismic wave propagation in laterally heterogeneous anelastic media: theory and applications to seismic zonation. Adv Geophys 43:1–95

    Article  Google Scholar 

  • Panza GF, La Mura C, Peresan A, Romanelli F, Vaccari F (2012) Chapter three-seismic hazard scenarios as preventive tools for a disaster resilient society. Adv Geophys 53:93–165

    Article  Google Scholar 

  • Peresan A, Gorshkov A, Soloviev A, Panza GF (2015) The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment. Bollettino Di Geofisica Teorica Ed Applicata. https://doi.org/10.4430/bgta0141

    Article  Google Scholar 

  • Pollitz FF, Kellogg L, Burgmann R (2002) Sinking mafic body in a reactivated lower crust: a mechanism for stress concentration at the New Madrid Seismic zone. Bull Seism Soc Am 91:1882–1897

    Article  Google Scholar 

  • Rajendran CP, Rajendran K (2001) Character of deformation and past seismicity associated with the 1819 Kachchh earthquake, northwestern India. Bull Seismol Soc Am 91:407–426

    Article  Google Scholar 

  • Rantsman EY (1979) Morphostructure of mountain regions and sites of earthquakes. Nauka, Moscow (in Russian)

    Google Scholar 

  • Rantsman EYA, Glasko MP (2004) Morphostructural nodes are locations of extreme natural phenomena. Media-Press, Moscow (in Russian)

    Google Scholar 

  • RIGW (Research Institute of Groundwater) (1997) Hydro-geological map of Luxor area, explanatory notes: research institute of groundwater: Kalioubia, Egypt. Scale 1(100):000

    Google Scholar 

  • Sabry AA, Agaiby SW, Mourad SA, Aly TM (2001) Seismic hazard of Egypt with consideration to local geotechnical conditions. Dissertation, Cairo University

  • Saleh M, Becker M (2013) A new velocity field from the analysis of the Egyptian permanent GPS network (EPGN). Arab J Geosci 7:4665–4682

    Article  Google Scholar 

  • Sandiford M, Egholm DL (2008) Enhanced intraplate seismicity along continental margins: some causes and consequences. Tectonophysics 457:197–208

    Article  Google Scholar 

  • Satyabala SP, Gupta HK (1996) Is the quiescence of major earthquakes (M≥7.5) since 1952 in the Himalaya and northeast India real? Bull Seismol Soc Am 86:1983–1986

    Article  Google Scholar 

  • Sawires R, Peláez JA, Fat-Helbary RE, Ibrahim HA (2016a) A review of seismic hazard assessment studies and hazard description in the building codes for Egypt. Acta Geod Geophys. https://doi.org/10.1007/s40328-015-0117-5

    Article  Google Scholar 

  • Sawires R, Peláez JA, Fat-Helbary RE, Ibrahim HA (2016b) Updated probabilistic seismic hazard values for Egypt. Bull Seismol Soc Am. https://doi.org/10.1785/0120150218

    Article  Google Scholar 

  • Sawires R, Peláez JA, Ibrahim HA, Fat-Helbary RE, Henares J, Hamdache M (2016c) Delineation and characterization of a new seismic source model for seismic hazard studies in Egypt. Nat Hazards 80(3):1823–1864

    Article  Google Scholar 

  • Sawires R, Peláez JA, Fat-Helbary RE, Ibrahim HA, García-Hernández MT (2015) An updated seismic source model for Egypt. In: Earthquake engineering—from engineering seismology to optimal seismic design of engineering structures. InTech, Croatia, pp 1–51‏

  • Schlupp A, Avouac JP, Clauzon G (2001) Post-Messinian activity of the Nimes fault. Mémoire De La Société Géologique De France 172:697–711

    Article  Google Scholar 

  • Scotti O, Baumont D, Quenet G, Levret A (2004) The French macroseismic database SISFRANCE: objectives, results and perspectives. Ann Geophys 47(2/3):571–581

    Google Scholar 

  • Sibson RH (1994) Crustal stress, faulting and fluid flow. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins spec, vol 78. Publs Geol Soc, London, pp 69–84

    Google Scholar 

  • Singh SK et al (1999) Crustal and upper mantle structure of Peninsular India and source parameters of the May 21, 1997, Jabalpur earthquake (Mw = 5.8): results from a new regional broad-band network. Bull Seism Soc Am 89:1632–1641

    Article  Google Scholar 

  • SisFrance (2008) Base données de sismicité historique franҫaise. BRGM, EDF, ISRN. http://www.sisfrance.net

  • Soloviev AA, Gvishiani AD, Gorshkov AI, Dobrovolsky MN, Novikova OV (2014) Recognition of earthquake-prone areas: methodology and analysis of the results. Izv Phys Solid Earth. https://doi.org/10.1134/S1069351314020116

    Article  Google Scholar 

  • Stein S, Liu M, Calais E, Li Q (2009) Mid-continent earthquakes as a complex system. Seismol Res Lett 80:551–553

    Article  Google Scholar 

  • Stevenson D, Gangopadhyay A, Talwani P (2006) Booming plutons: source of microearthquakes in south Carolina. Geophys Res Lett 33(L03316):1–4

    Google Scholar 

  • Talwani P (1988) The intersection model for intraplate earthquakes. Seismol Res Lett 59:305–310

    Article  Google Scholar 

  • Talwani P (1999) Fault geometry and earthquakes in continental interiors. Tectonophysics 305:371–379

    Article  Google Scholar 

  • Talwani P (2014) Intraplate earthquakes. Cambridge University Press

    Book  Google Scholar 

  • Vigny C, Chéry J, Duquesnoy T et al (2002) GPS network monitors the Western Alps’ deformation over a five-year period: 1993–199. J Geodesy 76(2):63–76

    Article  Google Scholar 

  • Vorobieva I, Mandal P, Gorshkov A (2014) Numerical modeling of seismicity and geodynamics of the Kachchh rift zone, Gujarat, India. Tectonophysics. https://doi.org/10.1016/j.tecto.2014.07.020

    Article  Google Scholar 

  • Vorobieva I, Mandal P, Gorshkov A (2017) Block-and-fault dynamics modelling of the Himalayan frontal arc: implications for seismic cycle, slip deficit, and great earthquakes. J Asian Earth Sci 148:131–141

    Article  Google Scholar 

  • Vorobieva I, Gorshkov A, Mandal P (2021) Modelling the seismic potential of the Indo-Burman megathrus. Sci Rep. https://doi.org/10.1038/s41598-021-00586-y

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, and surface displacement. Bull Seism Soc Am 84:974–1002

    Google Scholar 

  • Zoback ML, Richardson RM (1996) Stress Perturbation associated with the Amazonas and other ancient continental rifts. J Geophys Res 101(B3):5459–5475

    Article  Google Scholar 

Download references

Acknowledgements

A. Gorshkov and O. Novikova were partly funded by Russian Foundation of Basic Research (RFBR) according to the research Projects 20-55-18008. P. Mandal was partially supported by the Department of Science and Technology (DST) according to research Project 12-05-92699. P. Mandal is grateful to the Director, CSIR-NGRI, Hyderabad, for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Contributions

The morphostructural mapping has been done by AG, HH, and PM. AG, ON have performed the recognition of seismogenic nodes. Data are gathered, prepared, and pre-processed by AG, HH, PM, and ON. AG, HH, PM, and ON contributed to discussions, interpretation, and writing of the paper.

Corresponding author

Correspondence to A. Gorshkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, A., Hassan, H.M., Mandal, P. et al. Identifying Potential Earthquake Sources in Continental Environments. Surv Geophys 43, 529–559 (2022). https://doi.org/10.1007/s10712-021-09683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-021-09683-z

Keywords

Navigation