Skip to main content
Log in

Investigation of the Effect of the Short-Term Exposure of Oxygen and Hydrogen Plasma on the Composition and Structure of Thin Tin Dioxide Films

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Modern technologies cannot function without the production of thin films of tin dioxide, which are most widely used mainly in three areas: as transparent electrodes, catalysts, and solid-state sensors of various gases. Their use as transparent electrodes is related to the high transmittance of tin dioxide layers in the optical range, as well as with their low electrical resistivity. The effect of short-term exposure to plasma on the composition and structure of thin films of tin dioxide obtained from a solution of pentahydrate tin tetrachloride in 97% ethanol with different concentrations of tin ions is considered. The linear character of the dependence of the thickness of the tin dioxide SnO2 films on the concentration of the solution and the number of layers applied is revealed. A decrease in the electrical resistance of the films is found with an increase in the concentration of the initial solution and an increase in the number of layers. It is shown that processing SnO2 films of hydrogen plasma makes it possible to reduce their electrical resistance without decreasing transparency. The oxygen plasma treatment reduces the transparency of SnO2 films, and the resistance of the films increases with an increase in the duration of such treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Lee, S.Y., Cho, S.H., Cho, Y.S., Kim, S.J., and Kim, S.H., Carbon black and titanium interlayers between zinc oxide photo electrode and fluorine-doped tin oxide for dye-sensitized solar cells, J. Nanosci. Nanotechnol., 2019, vol. 19, no. 7, pp. 4260–4264. https://doi.org/10.1166/jnn.2019.16269

    Article  Google Scholar 

  2. Demir, E., Aydin, M., Arie, A.A., and Demir-Cakan, R., Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries, J. Alloys Compd., 2019, vol. 788, pp. 1093–1102. https://doi.org/10.1016/j.jallcom.2019.02.264

    Article  Google Scholar 

  3. Park, B.E., Park, J., Lee, S., Lee, S., Kim, W.H., and Kim, H., Phase-controlled synthesis of SnOx thin films by atomic layer deposition and post-treatment, Appl. Surf. Sci., 2019, vol. 480, pp. 472–477. https://doi.org/10.1016/j.apsusc.2019.03.013

    Article  Google Scholar 

  4. Tompakova, N.M., Dmitriyeva, E.A., Lebedev, I.A., Serikkanov, A.S., Grushevskaya, E.A., Mit’, K.A., and Fedosimova, A.I., Influence of hydrogen plasma on SnO2 thin films, Mater. Today: Proc., 2020, vol. 25, no. 1, pp. 83–87. https://doi.org/10.1016/j.matpr.2019.12.053

    Article  Google Scholar 

  5. Kiliç, C. and Zunger, A., Observation of solitary elastic surface pulses, Phys. Rev. Lett., 2002, vol. 88, pp. 076104-2–076104-4.

  6. Tompakova, N.M., Dmitrieva, E.A., Grushevskaya, E.A., Lebedev, I.A., Serikkanov, A.S., Mukhamedshina, D.M., and Mit’, K.A., Effect of a three-minute treatment with hydrogen plasma on the structure and properties of thin SnO2 films, Vestn. KazGu, Ser. Fiz., 2019, vol. 71, no. 4, pp. 67–74. https://doi.org/10.26577/RCPh-2019-i4-9

    Article  Google Scholar 

  7. Fedosimova, A.I., Baytimbetova, B.A., Dmitrieva, E.A., Lebedev, I.A., Ryabikin, Yu.A., and Temiraliev, A.T., Noise alignment for thin SnO2 films, in Proceedings of the 20th International Sol-Gel Conference on The Next Generation, St. Petersburg, Russia, 2019, p. 457.

  8. Dmitrieva, E.A., Lebedev, I.A., Grushevskaya, E.A., Murzalinov, D.O., Serikkanov, A.S., Tompakova, N.M., and Fedosimova, A.I., Effect of a three-minute exposure to oxygen plasma on the properties of tin oxide films, in Materialy mezhdunarodnoi nauchnoi konferentsii studentov i molodykh uchenykh “FARABI ƏLEMI” (Proceedings of the International Conference on Students and Young Scientists FARABI ƏLEMI), Almaty (Kazakhstan), 2020, p. 197.

  9. Cui, H.T. and Zheng, Z.Q., Electrically conductive TiO2/indium tin oxide coated glass substrates with high visible light transparency prepared by an electrodeposition method, Thin Solid Films, 2019, vol. 691, p. 137612. https://doi.org/10.1016/j.tsf.2019.137612

    Article  Google Scholar 

  10. Mohammad, T., Kumar, V., and Dutta, V., Spray deposited indium doped tin oxide thin films for organic solar cell application, Phys. E (Amsterdam, Neth.), 2020, vol. 117, p. 113793. https://doi.org/10.1016/j.physe.2019.113793

  11. Ozen, Y. and Candan, I., SnO2 interlayer effects on the inverted polymer solar cells, Chem. Phys. Lett., 2020, vol. 740, p. 137078. https://doi.org/10.1016/j.cplett.2019.137078

    Article  Google Scholar 

  12. Batzill, M. and Diebold, U., The surface and materials science of tin oxide, Prog. Surf. Sci., 2005, vol. 79, pp. 47–154. https://doi.org/10.1016/j.progsurf.2005.09.002

    Article  Google Scholar 

  13. Zhang, R.Y., Zhu, F.F., Dong, Y., Wu, X.M., Sun, Y.H., Zhang, D.R., Zhang, T., and Han, M.L., Function promotion of \({\text{SO}}_{4}^{{2 - }}\)/Al2O3–SnO2 catalyst for biodiesel production from sewage sludge, Renewable Energy, 2020, vol. 147, no. 1, pp. 275–283. https://doi.org/10.1016/j.renene.2019.08.14110.1016/j.renene.2019.08.141

    Article  Google Scholar 

  14. Chen, Z., Fan, T.T., Zhang, Y.Q., Xiao, J., Gao, M.R., Duan, N.Q., Zhang, J., Li, J.-H., Liu, Q., Yi, X., and Luo, J.-L., Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH, Appl. Catal. B, 2020, vol. 261, p. 118243. https://doi.org/10.1016/j.apcatb.2019

    Article  Google Scholar 

  15. Zhang, B., Wang, Y., Zhang, J., Chen, S., and Sun, L., Well-dispersed SnO2 nanocrystals on n-doped carbon nanowires as efficient electrocatalysts for carbon dioxide reduction, J. Energy Chem., 2020, vol. 41, pp. 7–14. https://doi.org/10.1016/j.jechem.2019.04.022

    Article  Google Scholar 

  16. Grushevskaya, E.A., Ibraimova, S.A., Dmitriyeva, E.A., Lebedev, I.A., Mit’, K.A., Mukhamedshina, D.M., Fedosimova, A.I., Serikkanov, A.S., and Temiraliev, A.T., Sensitivity to ethanol vapour of thin films SnO2 doped with fluorine, Euras. Chem.-Technol. J., 2019, vol. 21, no. 1, pp. 13–17. https://doi.org/10.18321/ectj781

    Article  Google Scholar 

  17. Dmitriyeva, E.A., Mukhamedshina, D.M., Mit’, K.A., Lebedev, I.A., Girina, I.I., Fedosimova, A.I., and Grushevskya, E.A., Doping of fluorine of tin dioxide films synthesized by sol-gel method, News Natl. Acad. Sci. Rep. Kazakhst., Ser. Geol. Tech. Sci., 2019, vol. 433, no. 1, pp. 73–79. https://doi.org/10.32014/2019.2518-170x.9

    Article  Google Scholar 

  18. Manikandan, V., Petrila, I., Vigneselvan, S., Mane, R.S., Vasile, B., Dharmavarapu, R., Lundgaard, S., Juodkazis, S., and Chandrasekaran, J., A reliable chemiresistive sensor of nickel-doped tin oxide (Ni-SnO2) for sensing carbon dioxide gas and humidity, RSC Adv., 2020, vol. 10, no. 7, pp. 3796–3804. https://doi.org/10.1039/c9ra09579a

    Article  Google Scholar 

  19. Somjaijaroen, N., Sakdanuphab, R., Chanlek, N., Chirawatkul, P., and Sakulkalavek, A., Simultaneous O2 plasma and thermal treatment for improved surface conductivity of Cu-doped SnO2 films, Vacuum, 2019, vol. 166, pp. 212–217. https://doi.org/10.1016/j.vacuum.2019.05.017

    Article  Google Scholar 

  20. Stuckert, E.P. and Fisher, E.R., Ar/O2 and H2O plasma surface modification of SnO2 nanomaterials to increase surface oxidation, Sens. Actuators, B, 2015, vol. 208, pp. 379–388. https://doi.org/10.1016/j.snb.2014.11.049

    Article  Google Scholar 

  21. Seo, H.B., Bae, B.S., Bang, H.I., and Yun, E.J., Effects of plasma treatment on the composition and phase changes of sputter-deposited SnOx thin films, J. Nanosci. Nanotechnol., 2020, vol. 20, no. 1, pp. 197–205. https://doi.org/10.1166/jnn.2020.17225

    Article  Google Scholar 

  22. Neeraj, K.M., Kumar, Ch., Kumar, A., Kumar, M., Chaudhary, P., and Rajeev Singh, Structural and optical properties of SnO2–Al2O3 nanocomposite synthesized via sol-gel route, Mater. Sci. (Poland), 2015, vol. 33, no. 4, pp. 714–718. https://doi.org/10.1515/msp-2015-0101

    Article  Google Scholar 

  23. Yarmonov, A.N., Larionov, D.D., and Yakhikhanov, R.R., Obtaining optically transparent conductive coatings by thermal evaporation, Izv. Samar. Nauch. Tsentra RAN, 2015, vol. 17, no. 2 (4), pp. 936–939.

  24. Dmitrieva, E.A., Mukhamedshina, D.M., Beisenkhanov, N.B., and Mit’, K.A., The effect of NH4F and NH4OH on the structure and physical properties of thin SnO2 films synthesized by the sol-gel method, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 31–36. https://doi.org/10.1134/s1087659614010076

    Article  Google Scholar 

  25. Mukhamedshina, D.M., Fedosimova, A.I., Dmitriyeva, E.A., Lebedev, I.A., Grushevskaya, E.A., Ibraimova, S.A., Mit’, K.A., and Serikkanov, A.S., Influence of plasma treatment on physical properties of thin SnO2 films obtained from SnCl4 solutions with additions of NH4F and NH4OH, Euras. Chem.-Technol. J., 2019, vol. 21, pp. 57–61. https://doi.org/10.18321/ectj791

    Article  Google Scholar 

  26. Grushevskaya, E.A., Dmitrieva, E.A., Lebedev, I.A., Ryabikin, Yu.A., Temiraliev, A.T., and Fedosimova, A.I., Method for increasing signal-to-noise ratio in EPR spectroscopy, Vestn. KazNU, 2018, no. 2, pp. 76–82.

  27. Zhukov, R.N., Kiselev, D.A., Shcherbachev, K.D., Voronova, M.I., Ksenich, S.V., Temirov, A.A., Timushkin, N.G., Chichkov, M.V., Bykov, A.S., Malinkovich, M.D., and Parkhomenko, Y.N., Synthesis and nanoscale characterization of LiNbO3 thin films deposited on Al2O3 substrate by RF magnetron sputtering under electric field, J. Nano- Electron. Phys., 2017, vol. 8, no. 4, p. 04025. https://doi.org/10.21272/jnep.8(4(1)).04025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Tompakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tompakova, N.M., Polisan, A.A. Investigation of the Effect of the Short-Term Exposure of Oxygen and Hydrogen Plasma on the Composition and Structure of Thin Tin Dioxide Films. Russ Microelectron 50, 679–687 (2021). https://doi.org/10.1134/S1063739721080126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739721080126

Keywords:

Navigation