Skip to main content
Log in

Simulation of Hall Field Elements Based on Nanosized Silicon-on-Insulator Heterostructures

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

This article is devoted to the issues of numerical simulation of field Hall sensors (FHSs) based on the silicon-on-insulator (SOI) structure with two control gates. To solve the problem, a two-level local-one-dimensional computational model is used. At the first level, a series of one-dimensional Schrödinger–Poisson equations, which describe the distribution of the density of charge carriers across the heterostructure in different sections, are solved. The received information is transferred to the second level, where the current characteristics of the element are calculated. The numerical simulation results are compared with the experimental data obtained for FHSs. Comparative analysis shows close agreement between the calculated and experimental data. The developed computer model makes it possible to quickly carry out a multivariate analysis of various FHS structures, which creates the base for optimizing devices of the class under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mordkovich, V.N., Sensors based on silicon-on-insulator structures, Elektron. Tekh., Ser. 2: Poluprovodn. Prib., 2008, no. 2, pp. 34–44.

  2. Popovich, R.S., Hall Effect Devices, Bristol (Philadelphia): IOP Publ., 2004.

  3. Baranochnikov, M.L., Leonov, A.V., Mordkovich, V.N., Pazhin, D.M., and Filatov, M.M., Some features of magnetometric and sensor devices based on the field effect Hall sensor, in Proceedings of the Advanced Electromagnetics Symposium, Paris, France, 2012, pp. 455–459.

  4. Mordkovich, V.N., Baranochnikov, M.L., Leonov, A.V., Mokrushin, A.D., Omelianovskaya, N.M., and Pazhin, D.M., Field Hall device—a new type of magnetic field transducer, Datch. Sist., 2003, no. 7, pp. 33–38.

  5. Korolev, M.A., Pavlyuk, M.I., and Devlikanova, S.S., Physical model of SOI field-effect Hall sensor, Izv. Vyssh. Uchebn. Zaved., Elektron., 2017, no. 2, pp. 166–170. https://doi.org/10.24151/1561-5405-2017-22-2-166-170

  6. Shcherbachev, K.D., Bublik, V.T., Mordkovich, V.N., and Pazhin, D.M., Specific features of formation of radiation defects in the silicon layer in ‘silicon-on-insulator’ structures, Semiconductors, 2011, vol. 45, no. 6, pp. 738–742. https://doi.org/10.1134/S1063782611060224

    Article  Google Scholar 

  7. Mordkovich, V.N., Pazhin, D.M., Gromov, D.V., and Skorobogatov, P.K., Relaxation effects in field Hall sensors influence of impulse ionizing irradiation, Elektron. Tekh., Ser. 2: Poluprovodn. Prib., 2011, no. 1, pp. 19–26.

  8. Korolev, M.A., Kozlov, A.V., and Petrunina, S.S., Functioning features of the SOI field-effect hall sensor designed for application in telecommunications networks, Tr. MFTI, 2015, vol. 7, no. 3, pp. 91–95.

    Google Scholar 

  9. Leonov, A.V., Malykh, A.A., Mordkovich, V.N., and Pavlyuk, M.I., A magnetosensitive thin-film silicon Hall-type field-effect transistor with operating temperature range expanded up to 350°C, Tech. Phys. Lett., 2016, vol. 42, no. 1, pp. 71–74. https://doi.org/10.1134/S1063785016010272

    Article  Google Scholar 

  10. Leonov, A.V., Malykh, A.A., Mordkovich, V.N., and Pavlyuk, M.I., Field controlled Si Hall element with extended operation temperature range from liquid helium temperature up to 650°K, Proc. Eng., 2015, vol. 120, pp. 1197–1200. https://doi.org/10.1016/j.proeng.2015.08.786

    Article  Google Scholar 

  11. Abgaryan, K.K. and Reviznikov, D.L., Vychislitel’nye algoritmy v zadachakh modelirovaniya i optimizatsii poluprovodnikovykh geterostruktur (Computational Algorithms in Problems of Modeling and Optimization of Semiconductor Heterostructures), Moscow: MAKS Press, 2016.

  12. Abgaryan, K.K. and Reviznikov, D.L., Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects, Comput. Math. Math. Phys., 2016, vol. 56, pp. 161–172. https://doi.org/10.1134/S0965542516010048

    Article  MathSciNet  MATH  Google Scholar 

  13. Abgaryan, K.K., Mutigullin, I.V., and Reviznikov, D.L., Computational model of 2DEG mobility in the AlGaN/GaN heterostructures, Phys. Status Solidi C, 2015, vol. 12, nos. 4–5, pp. 460–465. https://doi.org/10.1002/pssc.201400200

    Article  Google Scholar 

  14. Abgaryan, K.K., Mutigullin, I.V., and Reviznikov, D.L., Theoretical investigation of 2DEG concentration and mobility in the AlGaN/GaN heterostructures with various Al concentrations, Phys. Status Solidi C, 2015, vol. 12, no. 12, pp. 1376–1382. https://doi.org/10.1002/pssc.201510159

    Article  Google Scholar 

  15. Vasileska, D., Goodnick, S.M., and Goodnick, S., Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation, Boca Raton, FL: CRC, 2010.

    MATH  Google Scholar 

  16. Stengel, F., Noor Mohammad, S., and Morkoç, H., Theoretical investigation of electrical characteristics of AlGaN/GaN modulation doped field-effect transistors, J. Appl. Phys., 1996, vol. 80, no. 5, pp. 3031–3042. https://doi.org/10.1063/1.363162

    Article  Google Scholar 

  17. Naumova, O.V., Zaitseva, E.G., Fomin, B.I., Ilnitsky, M.A., and Popov, V.P., Density dependence of electron mobility in the accumulation mode for fully depleted SOI films, Semiconductors, 2015, vol. 49, no. 10, pp. 1316–1322. https://doi.org/10.1134/S106378261510017

    Article  Google Scholar 

  18. Sze, S.M., Physics of Semiconductor Devices, New York: Wiley-Interscience, 1981.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 19-08-01191A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Abgaryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mordkovich, V.N., Abgaryan, K.K., Reviznikov, D.L. et al. Simulation of Hall Field Elements Based on Nanosized Silicon-on-Insulator Heterostructures. Russ Microelectron 50, 617–622 (2021). https://doi.org/10.1134/S1063739721080059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739721080059

Keywords:

Navigation