Skip to main content
Log in

The Schur–Weyl Graph and Thoma’s Theorem

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We define a graded graph, called the Schur–Weyl graph, which arises naturally when one considers simultaneously the RSK algorithm and the classical duality between representations of the symmetric and general linear groups. As one of the first applications of this graph, we give a new proof of the completeness of the list of discrete indecomposable characters of the infinite symmetric group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alexandersson, The symmetric functions catalog,, https://www2.math.upenn.edu/~peal/polynomials/tableauOperators.htm#RSKvsDualRSK.

  2. A. Berele and A. Regev, “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras”, Adv. in Math., 64:2 (1987), 118–175.

    Article  MathSciNet  Google Scholar 

  3. A. Borodin and G. Olshanski, Representations of the Infinite Symmetric Group, Cambridge University Press, Cambridge, 2017.

    Book  Google Scholar 

  4. W. Fulton, Young Tableaux With Applications to Representation Theory and Geometry, Cambridge University Press, Cambridge, 1977.

    MATH  Google Scholar 

  5. D. Grinberg, Notes on the combinatorial fundamentals of algebra, arXiv: 2008.09862.

  6. S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Amer. Math. Soc., Providence, RI, 2003.

    Book  Google Scholar 

  7. S. Kerov, A. Okounkov, and G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Internat. Math. Res. Notices, :4 (1998), 173–199.

    Article  MathSciNet  Google Scholar 

  8. S. V. Kerov and A. M. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 116–124.

    Article  MathSciNet  Google Scholar 

  9. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “The plactic monoid”, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002, Chapter 6.

    Google Scholar 

  10. A. Yu. Okounkov, “Thoma’s theorem and representations of the infinite bisymmetric group”, Funkts. Anal. Prilozhen., 28:2 (1994), 31–40; English transl.:, Functional Anal. Appl., 28:2 (1994), 100–107.

    MathSciNet  Google Scholar 

  11. D. Romik and P. Śniady, “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737.

    Article  MathSciNet  Google Scholar 

  12. P. Śniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin, and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630.

    Article  MathSciNet  Google Scholar 

  13. R. Stanley, Enumerative Combinatorics, Cambridge University Press, Cambridge, 1999.

    Book  Google Scholar 

  14. E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61.

    Article  MathSciNet  Google Scholar 

  15. A. M. Vershik, “Description of invariant measures for the actions of some infinite-dimensional groups”, Dokl. Akad. Nauk SSSR, 218:4 (1974), 749–752; English transl.:, Soviet Math. Dokl., 15:4 (1974), 1396–1400.

    MathSciNet  Google Scholar 

  16. A. M. Vershik, “Three theorems on the uniqueness of the Plancherel measure from different viewpoints”, Trudy MIAN, 305 (2019), 71–85; English transl.:, Proc. Steklov Inst. Math., 305 (2019), 63–77.

    Article  MathSciNet  Google Scholar 

  17. A. M. Vershik, “Combinatorial encoding of Bernoulli schemes and the asymptotic behavior of Young tableaux”, Funkts. Anal. Prilozhen., 54:2 (2020), 3–24; English transl.:, Functional Anal. Appl., 54:2 (2020), 77–92.

    Article  Google Scholar 

  18. A. M. Vershik, “A method of defining central and Gibbs measures and the ergodic method”, Dokl. Ross. Akad. Nauk, 497:1 (2021), 7–11; English transl.:, Dokl. Math., 103:2 (2021), 72–75.

    MATH  Google Scholar 

  19. A. M. Vershik, “Groups generated by involutions, numbering of posets, and central measures”, Uspekhi Mat. Nauk, 76:4 (2021); English transl.:, Russian Math. Surveys, 76:5(461) (2021).

    Google Scholar 

  20. A. M. Vershik and S. V. Kerov, “Asymptotic theory of characters of the symmetric group”, Funkts. Anal. Prilozhen., 15:4 (1981), 15–27; English transl.:, Functional Anal. Appl., 15:4 (1981), 246–255.

    MathSciNet  Google Scholar 

  21. A. M. Vershik and N. V. Tsilevich, “Ergodicity and totality of partitions associated with the RSK correspondence”, Funkts. Anal. Prilozhen., 55:1 (2021), 33–42; English transl.:, Functional Anal. Appl., 55:1 (2021).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation grant no. 21-11-00152.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Vershik or N. V. Tsilevich.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2021, Vol. 55, pp. 26–41 https://doi.org/10.4213/faa3917.

To the memory of S. V. Kerov (12.06.1946–30.07.2000)

Translated by N. V. Tsilevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershik, A.M., Tsilevich, N.V. The Schur–Weyl Graph and Thoma’s Theorem. Funct Anal Its Appl 55, 198–209 (2021). https://doi.org/10.1134/S0016266321030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266321030023

Keywords

Navigation