Skip to main content
Log in

Laser Induced Dielectric Breakdown as a Novel Method for the Synthesis of Molybdenum Boride

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Laser induced dielectric breakdown (LIDB) on a surface of solid Mo in H2/BF3 atmosphere at 30–760 Torr and in a gaseous mixture MoF6/H2/BF3 + at 760 Torr pressure is tested for synthesis and deposition of superhard molybdenum borides that are needed in many areas of industry and technology. The emission spectra of the plasma and the dynamics of the gas discharge near the substrate are investigated. A comparative analysis of the gas mixture before and after exposure to LIDB plasma is carried out using IR spectroscopy. The conditions for the formation of molybdenum borides are determined. A thermodynamic analysis of the MoF6/H2/BF3 and Mo/H2/BF3 systems is carried out to determine the temperature range for the formation of molybdenum borides and establish the main chemical reactions responsible for their formation. Deposits containing MoB and MoB2 phases are obtained. For the mixture MoF6/H2/BF3, the deposit exhibits an amorphous layered structure, which contains 19.15 wt% F, 30.45% O, and 0.8% Si. For the Mo/H2/BF3 system at the pressures 30 and 160 Torr, nanopowder of molybdenum boride is produced with a characteristic grain size of 100 nm. At pressures above 160 Torr, Mo nanopowder with a grain size < 30 nm is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaner RB, Gilman JJ, Tolbert SH (2005) Science 308:1268–1269

    Article  CAS  Google Scholar 

  2. Chung HY, Weinberger MB, Levine JB et al (2007) Science 316:436–439

    Article  CAS  Google Scholar 

  3. Steiniz R, Binder I, Moskowite D (1952) J Met 4:983–987

    Google Scholar 

  4. Levine JB, Tolbert SH, Kaner RB (2009) Adv Functional Mater 19:3519–3533

    Article  CAS  Google Scholar 

  5. Zhang M, Wang H, Wang H, Cui T, Ma Y (2010) J Phys Chem C 114:6722–6725

    Article  CAS  Google Scholar 

  6. Camurlu HE (2011) J Alloys Compounds 509:5431–5436

    Article  CAS  Google Scholar 

  7. Barnett S, Madan A (1998) Phys World 11:45–48

    Article  CAS  Google Scholar 

  8. Li Y, Fan Y, Chen Y (2003) J Solid State Chem 170:135–141

    Article  CAS  Google Scholar 

  9. Jothi PR, Yubuta K, Fokwa BPT (2018) Adv Mater 30:1704181

    Article  Google Scholar 

  10. Rybkovskiy DV, Kvashnin AG, Kvashnina YuA, Oganov AR (2020) Chem Mater 32:7028–7035

    Article  Google Scholar 

  11. Kornev RA, Sennikov PG, Konychev DA et al (2016) J Radioanal Nucl Chem 309:833–840

    CAS  Google Scholar 

  12. Kornev RA, Sennikov PG, Nazarov VV (2017) Plasma Physics and Technology 4:169–172

    Article  Google Scholar 

  13. Sennikov PG, Gornushkin IB, Kornev RA et al (2021) Plasma Chem Plasma Processing 41:673–690

    Article  CAS  Google Scholar 

  14. Sennikov PG, Golubev SV, Mochalov LA, Kornev RA, Beliantsev SI, Zyryanov SM, Kossyu IA, Davydov AM (2017) Patent RF, 2610 583 [in Russian]

  15. Sennikov PG, Kornev RA, Shishkin AI (2017) Plasma Chem Plasma Processing 37:997–1008

    Article  CAS  Google Scholar 

  16. Kornev RA, Sennikov PG, Shabarova LV, Shishkin AI, Drozdova TA, Sintsov SV (2019) High Energy Chem 53:246–253

    Article  CAS  Google Scholar 

  17. Kornev RA, Konychev DA, Sennikov PG, Zyryanov SM (2018) Patent RF № 2 648 421 [in Russian]

  18. Jervis TR (1985) J Appl Phys 58:1400–1401

    Article  CAS  Google Scholar 

  19. Jervis TR, Newkirk LR (1986) J Mater Res 1:420–424

    Article  CAS  Google Scholar 

  20. Ronn AM (1976) Chem Phys Lett 42:202–204

    Article  CAS  Google Scholar 

  21. Lin ST, Ronn AM (1978) Chem Phys Lett 56:414–418

    Article  CAS  Google Scholar 

  22. Draper CW (1980) Met Trans 11A:349–351

    Article  CAS  Google Scholar 

  23. Shin SM, Draper CW, Mochel ME, Rigsbee JM (1985) Materials Lett 3:265–269

    Article  CAS  Google Scholar 

  24. Draper CW (1980) J Phys Chem 84:2089–2090

    Article  CAS  Google Scholar 

  25. Gornushkin IB, Sennikov PG, Kornev RA, Ermakov AA, Shkrunin VE (2020) Plasma Chem Plasma Processing 40:1145–1162

    Article  CAS  Google Scholar 

  26. Gribov LA, Smirnov VN (1961) Usp Fiz Nauk 527:527–567 [in Russian]

    Article  Google Scholar 

  27. Shabarova LV, Plekhovich AD, Kutyin AM, Sennikov PG, Kornev RA (2019) High Energy Chem 53:155–161

    Article  CAS  Google Scholar 

  28. Belov SG, Iorish VS, Yungman VS (2000) High Trmperature 38:191–196

    Article  CAS  Google Scholar 

  29. Stern KH, Weise EL (1966) High Temperature Properties and Decomposition of Inorganic Salts, NSRDS- NBS7 (Washington D.C.: US Gov Print Office)

  30. Gurvich LV, Veitz IV, Alcock CB (1989) Thermodynamic Properties of Individual Substances (New York: Hemisphere 21)

  31. Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and application (NASA Reference Publication 1311) Online version: https://cearun.grc.nasa.gov

  32. Parthiban S, Martin JML (2001) J Chem Phys 114:6014–6029

    Article  CAS  Google Scholar 

  33. Çamurlu HE (2011) J Alloy Compd 509:5431–5436

    Article  Google Scholar 

  34. Nuclear Sci. (1964) Abstracts 18 Oak Ridge Directed Operations, Technical Information Division 3785

  35. Yeh CL, Hsu WS (2008) J Alloy Compd 457:191–197

    Article  CAS  Google Scholar 

  36. Linn ST, Ronn AM (1978) Chem Phys Lett 56:414–418

    Article  Google Scholar 

  37. Ronn AM, Earl BL (1977) Chem Phys Lett 45:556–558

    Article  CAS  Google Scholar 

  38. Krikorian OH (1971) Lawrence Livermore National Laboratory Report UCRL- 51043

  39. Blinder AV, Bolgar AS (1991) Powder Metall Met Ceram 30:1053–1056

    Article  Google Scholar 

  40. Pankratz LB (1994) Thermodynamic Properties of Carbides, Nitrides, and Other Selected Substances Washington D.C. report 523

  41. Meschel SV, Kleppa OJ (1993) Metall Mater Trans A 24:947–950

    Article  Google Scholar 

  42. (1964) Tables of TD data, Vienna

  43. Touloukian YS, Ho CY (1970) Thermophysical Properties of Matter TPRC Data Series 5

  44. Lavut EG, Chelovskaya NV, Kashireninov OE (1993) J Eng Phys Thermophys 65:971–973

    Article  Google Scholar 

  45. Morishita M, Koyama K, Yagi S (2004) J Alloy Compd 376:111–114

    Article  CAS  Google Scholar 

  46. Gauthier MM (1995) Engineered Materials Handbook Desk Edition ASM Intl. 953

Download references

Acknowledgements

The authors are very grateful to the RSF Grant No 20-13-00035 basic support. as well as the Russian Ministry of Education and Science (subject 0095-2019-0008) for the partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A.Kornev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A.Kornev, R., Sennikov, P.G., Gornushkin, I.B. et al. Laser Induced Dielectric Breakdown as a Novel Method for the Synthesis of Molybdenum Boride. Plasma Chem Plasma Process 42, 395–412 (2022). https://doi.org/10.1007/s11090-021-10224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10224-0

Keywords

Navigation