Skip to main content
Log in

An efficient numerical method to solve the problems of 2D incompressible nonlinear elasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Presented herein is a numerical variational approach to the two-dimensional (2D) incompressible nonlinear elasticity. The governing equations are derived based upon the minimum total energy principle by considering the displacement and a pressure-like field as the two independent unknowns. The tensor equations are replaced by equations in a novel matrix-vector form. The proposed solution method is based upon the variational differential quadrature (VDQ) method and a transformation procedure. Using the introduced VDQ-based approach, the energy functional is precisely discretized in a direct way. Being locking-free, simple implementation and computational efficiency are the main features of this method. Also, it is free from numerical artifacts and instabilities. Some important problems of 2D incompressible elasticity are addressed to test the method. It is revealed that it can be efficiently utilized to capture the large strains of incompressible solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Demiray, H.: Large deformation analysis of some soft biological tissues. J. Biomech. Eng. 103, 73–78 (1981)

    Article  Google Scholar 

  2. Misra, J.C., Singh, S.I.: A large deformation analysis for aortic walls under a physiological loading. Int. J. Eng. Sci. 21, 1193–1202 (1983)

    Article  Google Scholar 

  3. Thorvaldsen, T., Osnes, H., Sundnes, J.: A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue. Comput. Meth. Biomech. Biomed. Eng. 8, 369–379 (2005)

    Article  Google Scholar 

  4. Wriggers, P., Reese, S.: A note on enhanced strain methods for large deformations. Comput. Methods Appl. Mech. Eng. 135, 201–209 (1996)

    Article  ADS  Google Scholar 

  5. Auricchio, F., da Veiga Beirao, L., Lovadina, C., Reali, A., Taylor, R.L., Wriggers, P.: Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52, 1153–1167 (2013)

    Article  MathSciNet  Google Scholar 

  6. Brink, U., Stein, E.: A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems. Comput. Methods Appl. Mech. Eng. 161, 77–101 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wriggers, P.: Mixed finite element methods–theory and discretization. In: Wriggers, P., Carstensen, C. (eds.) Mixed Finite Element Technologies. CISM Courses and Lectures, pp. 131–177. Springer, Berlin (2009)

    Chapter  Google Scholar 

  8. Barrientos, M.A., Gatica, G.N., Stephan, E.P.: A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate. Numer. Math. 91, 197–222 (2002)

    Article  MathSciNet  Google Scholar 

  9. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401–419 (2002)

    Article  MathSciNet  Google Scholar 

  10. Schroder, J., Viebahn, N., Balzani, D., Wriggers, P.: A novel mixed finite element for finite anisotropic elasticity; the SKA-element simplified kinematics for anisotropy. Comput. Methods Appl. Mech. Engrg. 310, 475–494 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Angoshtari, A., Faghih Shojaei, M., Yavari, A.: Compatible-strain mixed finite element methods for 2D compressible nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 313, 596–631 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gebhardt, C.G., Rolfes, R.: On the nonlinear dynamics of shell structures: combining a mixed finite element formulation and a robust integration scheme. Thin-Walled Struct. 118, 56–72 (2017)

    Article  Google Scholar 

  13. Daszkiewicz, K., Witkowski, W., Burzynski, S., Chróscielewski, J.: Robust four-node elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells. Continuum Mech. Thermodyn. 31, 1757–1784 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Malkus, D.S., Hughes, T.J.: Mixed finite element methods–reduced and selective integration techniques: a unification of concepts. Comput. Meth. Appl. Mech. Eng. 15, 63–81 (1978)

    Article  ADS  Google Scholar 

  15. Hughes, T.J.R.: Generalization of selective integration procedures to anisotropic and nonlinear media. Int. J. Numer. Methods Eng. 15, 1413–1418 (1980)

    Article  MathSciNet  Google Scholar 

  16. Reese, S., Wriggers, P.: A stabilization technique to avoid hourglassing in finite elasticity. Int. J. Numer. Methods Eng. 48, 79–109 (2000)

    Article  Google Scholar 

  17. Reese, S.: On the equivalence of mixed element formulations and the concept of reduced integration in large deformation problems. Int. J. Nonlinear Sci. Numer. Simul. 3, 1–33 (2002)

    Article  MathSciNet  Google Scholar 

  18. Taylor, R.L., Beresford, P.J., Wilson, E.L.: A non-conforming element for stress analysis. Int. J. Numer. Meth. Eng. 10, 1211–1219 (1976)

    Article  Google Scholar 

  19. Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Meth. Appl. Mech. Eng. 51, 177–208 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)

    Article  MathSciNet  Google Scholar 

  21. Chen, J.S., Pan, C.: A pressure projection method for nearly incompressible rubber hyperelasticity, part I: theory. J. Appl. Mech. 63, 862–868 (1996)

    Article  ADS  Google Scholar 

  22. Herrmann, L.R.: Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA J. 3, 1896–1900 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fosdick, R.L., MacSithigh, G.P.: Minimization in incompressible nonlinear elasticity theory. J. Elast. 16, 267–301 (1986)

    Article  MathSciNet  Google Scholar 

  24. Franca, L.P., Hughes, T.J.R., Loula, A.F.D., Miranda, I.: A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov–Galerkin finite element formulation. Numer. Math. 53, 123–141 (1988)

    Article  MathSciNet  Google Scholar 

  25. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996)

    Article  ADS  Google Scholar 

  26. Lamichhane, B.P.: A mixed finite element method for non-linear and nearly incompressible elasticity based on biorthogonal systems. Int. J. Numer. Methods Eng. 79, 870–886 (2009)

    Article  MathSciNet  Google Scholar 

  27. Goenezen, S., Barbone, P., Oberai, A.A.: Solution of the nonlinear elasticity imaging inverse problem: the incompressible case. Comput. Methods Appl. Mech. Eng. 200, 1406–1420 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  28. Baroli, D., Quarteroni, A., Ruiz-Baier, R.: Convergence of a stabilized discontinuous Galerkin method for incompressible nonlinear elasticity. Adv. Comput. Math. 39, 425–443 (2013)

    Article  MathSciNet  Google Scholar 

  29. Warne, D.A., Warne, P.G.: Torsion in nonlinearly elastic incompressible circular cylinders. Int. J. Non-Linear Mech. 86, 158–166 (2016)

    Article  ADS  Google Scholar 

  30. Faghih Shojaei, M., Yavari, A.: Compatible-strain mixed finite element methods for incompressible nonlinear elasticity. J. Comput. Phys. 361, 247–279 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Goh, C.M., Nielsen, P.M.F., Nash, M.P.: A stabilised mixed meshfree method for incompressible media: application to linear elasticity and Stokes flow. Comput. Methods Appl. Mech. Eng. 329, 575–598 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bersani, A., dell’Isola, F., Seppecher, P.: Lagrange multipliers in infinite dimensional spaces, examples of application. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2019)

  33. dell’Isola, F., Di Cosmo, F.: Lagrange multipliers in infinite-dimensional systems, methods of. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2018)

  34. Faghih Shojaei, M., Ansari, R.: Variational differential quadrature: a technique to simplify numerical analysis of structures. Appl. Math. Model. 49, 705–738 (2017)

    Article  MathSciNet  Google Scholar 

  35. Hassani, R., Ansari, R., Rouhi, H.: A VDQ-based multifield approach to the 2D compressible nonlinear elasticity. Int. J. Numer. Methods Eng. 118, 345–370 (2019)

    Article  MathSciNet  Google Scholar 

  36. Hassani, R., Ansari, R., Rouhi, H.: Large deformation analysis of 2D hyperelastic bodies based on the compressible nonlinear elasticity: a numerical variational method. Int. J. Non-Linear Mech. 116, 39–54 (2019)

    Article  ADS  Google Scholar 

  37. Hassani, R., Ansari, R., Rouhi, H.: An efficient numerical approach to the micromorphic hyperelasticity. Continuum Mech. Thermodynam. 32, 1011–1036 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ansari, R., Hassani, R., Faraji Oskouie, M., Rouhi, H.: Large deformation analysis in the context of 3D compressible nonlinear elasticity using the VDQ method. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-00959-3

    Article  Google Scholar 

  39. Ansari, R., Hassani, R., Faraji Oskouie, M., Rouhi, H.: Nonlinear bending analysis of hyperelastic Mindlin plates: a numerical approach. Acta Mech. 232, 741–760 (2021)

    Article  MathSciNet  Google Scholar 

  40. Chi, H., Talischi, C., Lopez-Pamies, O., Paulino, G.H.: Polygonal finite elements for finite elasticity. Int. J. Numer. Methods Eng. 101, 305–328 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details of the VDQ-based approach

Appendix: Details of the VDQ-based approach

1.1 Discretization operator

\(\llbracket \blacksquare _{1} \rrbracket _{\blacksquare _{2}}\) is applied for indicating the discretized form of \(\blacksquare _{1}\) on the domain \(\blacksquare _{2}\). According to Fig. 15, 2D discretization of arbitrary scalar f on the area A in \(s_{1}-s_{2}\) direction can be written as

$$\begin{aligned} \mathbbm {f}= & {} {\mathbf{f }} = \llbracket f \rrbracket _{A} \nonumber \\&\quad = \left[ {\mathfrak {f}}_{1}\, {\mathfrak {f}}_{2}\, \cdots \, {\mathfrak {f}}_{n_{1}}\, {\mathfrak {f}}_{n_{1}+1}\, {\mathfrak {f}}_{n_{1}+2}\, \cdots \, {\mathfrak {f}}_{2n_{1}}\, \cdots \, {\mathfrak {f}}_{\left( n_{2}-1 \right) n_{1}+1}\, {\mathfrak {f}}_{\left( n_{2}-1 \right) n_{1}+2}\, \cdots \, {\mathfrak {f}}_{n_{1}n_{2}} \right] ^{\mathrm {T}} \end{aligned}$$
(A.1a)

As well, the 2D discretization of matrix \({\mathbf{f }}\) on the area A in \(s_{1}-s_{2}\) direction is expressed as follows

(A.1b)

where \({\mathbf{f }}_{{\varvec{IJ}}}\) denotes the discretized form of element \(f_{ij}\) which is discretized according to Eq. (A.1a).

Fig. 15
figure 15

Schematic of discretization process of \(\mathrm {f}\) on a specified domain

1.2 Derivative and integral operators

The derivative operator is defined as

$$\begin{aligned} \llbracket f_{,\blacksquare _{1}} \rrbracket _{\blacksquare _{2}} = {\mathop {{\mathcal {D}}}\limits ^{\blacksquare _{3}}}_{\blacksquare _{1};\blacksquare _{2}}\llbracket f \rrbracket _{\blacksquare _{2}}= {\mathop {{\mathcal {D}}}\limits ^{\blacksquare _{3}}}_{\blacksquare _{1};\blacksquare _{2}}\mathbbm {f}, \end{aligned}$$
(A.2)

where

\(\blacksquare _{1}:\) Variable with respect to which derivative is taken

\(\blacksquare _{2}:\) Domain on which differentiation is performed

\(\blacksquare _{3}:\) Dimension of problem (1d, 2d, 3d).

The integral operator is also introduced as

$$\begin{aligned} \int _{\blacksquare _{2}} {fd\blacksquare _{1}} = {\mathop {{\mathcal {S}}}\limits ^{\blacksquare _{3}}}_{\blacksquare _{1};\blacksquare _{2}}\llbracket f \rrbracket _{\blacksquare _{2}} = {\mathop {{\mathcal {S}}}\limits ^{\blacksquare _{3}}}_{\blacksquare _{1};\blacksquare _{2}}\mathbbm {f}, \end{aligned}$$
(A.3)

where

\(\blacksquare _{1}:\) Variable with respect to which integral is taken

\(\blacksquare _{2}:\) Domain on which integration is performed

\(\blacksquare _{3}:\) Dimension of problem (1d, 2d, 3d).

The discretization is done using computational points (Chebyshev distribution) in the natural space:

$$\begin{aligned} {\varvec{\upzeta }}^{cheb} = \text {Chebyshev-distribution\,(domain, node number)} \end{aligned}$$
(A.4)

For the 1D case, one can write

$$\begin{aligned} \overline{{{\overline{\xi }}} } = \left[ {\begin{array}{cccc} {\varvec{\upxi }}_{;1} &{} {\varvec{\upxi }}_{;2} &{} \cdots &{} {\varvec{\upxi }}_{;n}\\ \end{array} } \right] = \llbracket \xi \rrbracket _{A} = {\varvec{\upzeta }}^{cheb} = \text { Chebyshev-distribution }(\left[ -1,1 \right] n) \end{aligned}$$
(A.5)

Also, in the 2D case one has

$$\begin{aligned} {\varvec{\upxi }}_{{\mathbf{1 }}}= & {} \left[ {\begin{array}{cccc} {\varvec{\upxi }}_\mathbf{1 ;1} &{} {\varvec{\upxi }}_\mathbf{1 ;2} &{} \cdots &{} {\varvec{\upxi }}_\mathbf{1 ;n}\\ \end{array} } \right] = \llbracket \xi _{1} \rrbracket _{A} = \left( {\mathbf{1 }}_{n_{2}*1} \circledast {\varvec{\upzeta }}_{1}^{cheb} \right) , \end{aligned}$$
(A.6a)
(A.6b)

where

$$\begin{aligned} {\varvec{\upzeta }}_{1}^{\mathrm{cheb}}= & {} \text { Chebyshev-distribution }(\left[ -1,1 \right] , n_{1})\\ {\varvec{\upzeta }}_{2}^{\mathrm{cheb}}= & {} \text { Chebyshev-distribution }(\left[ -1,1 \right] , n_{2}). \end{aligned}$$

Consequently, the 1D derivative operator in the natural space is defined as

$$\begin{aligned} \mathbbm {f}_{,\overline{{{\overline{\xi }}} }}^{(r)}= & {} \llbracket f_{,\xi }^{(r)} \rrbracket _{{\check{\varGamma }}}= {\mathop {\mathcal {D}}\limits ^{1d}}_{\xi }^{(r)}\llbracket f \rrbracket _{{\check{\varGamma }}}= {\mathop {{\mathcal {D}}}\limits ^{1d}}_{{\xi }}^{(r)}\mathbbm {f}, \end{aligned}$$
(A.7a)
$$\begin{aligned} D_{\xi \, ij}^{\left( r \right) }= & {} \left\{ {\begin{array}{ll} \delta _{ij} &{} r=0\\ \frac{P_{i}}{\left( {\varvec{\upxi }}_{;i}-{\varvec{\upxi }}_{;j} \right) P_{j}}&{} i\ne j,r=1\\ r\left( D_{\xi ij}^{\left( 1 \right) }D_{\xi ii}^{\left( r-1 \right) }-\frac{D_{\xi ij}^{\left( r-1 \right) }}{\left( {\varvec{\upxi }}_{;i}-{\varvec{\upxi }}_{;j} \right) } \right) &{} i\ne j,r=2,3,\ldots ,n-1\\ -{\mathop {\mathop {\sum }\limits _{j=1}}\limits _{j\ne 1}^n} D_{\xi ij}^{\left( r \right) }&{} i=j,r=1,2,3,\ldots ,n-1\\ \end{array}} \right. \end{aligned}$$
(A.7b)

in which

$$\begin{aligned} P_{j}= {\mathop {\mathop {\prod }\limits _{i=1}}\limits _{i\ne j}^n}\left( {\varvec{\upxi }}_{;j}-{\varvec{\upxi }}_{;i} \right) , \end{aligned}$$
(A.7c)

Furthermore, \({\varvec{\upxi }}_{;i}\) is \(i-\)th element of \(\overline{{{\overline{\xi }}} }\) from Eq. (A.5). Finally,

$$\begin{aligned} {\mathop {{\mathcal {D}}}\limits ^{1d}}_{\xi }^{(r)}={\mathop {{\mathcal {D}}}\limits ^{1d}}_{,{\mathop {\underbrace{\xi \ldots \xi }}\limits _{r}}}=\left[ D_{\xi \, ij}^{\left( r \right) } \right] \end{aligned}$$
(A.8)

Accordingly, the 2D derivative operator is constructed as

$$\begin{aligned} \mathbbm {f}_{,{\varvec{\upxi }}_{{\mathbf {1}}}}^{(r)}= & {} \llbracket \mathbbm {f}_{,\xi _{1}}^{(r)} \rrbracket _{{\check{A}}} = {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{1}}^{(r)}\llbracket f \rrbracket _{{\check{A}}} = {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{1}}^{(r)}\mathbbm {f}, \quad \quad {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{1}}^{(r)} = \left( {\mathbf{I }}_{n_{2}} \circledast {\mathop {{\mathcal {D}}}\limits ^{1d}}_{\xi _{1}}^{\left( r \right) } \right) , \end{aligned}$$
(A.9a)
$$\begin{aligned} \mathbbm {f}_{,{\varvec{\upxi }}_{{\mathbf {2}}}}^{(r)}= & {} \llbracket f_{,\xi _{2}}^{(r)} \rrbracket _{{\check{A}}} = {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{2}}^{(r)}\llbracket f \rrbracket _{{\check{A}}} = {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{2}}^{\left( r \right) }\mathbbm {f} \quad \quad {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{2}}^{\left( r \right) } = \left( {\mathop {{\mathcal {D}}}\limits ^{1d}}_{\xi _{2}}^{\left( r \right) } \circledast {\mathbf{I }}_{n_{1}} \right) ,\nonumber \\ \mathbbm {f}_{,\overline{{{\overline{\xi }}} }}^{(r)}= & {} \llbracket f_{,{\varvec{\upxi }}}^{(r)} \rrbracket _{{\check{A}}}= {\mathop {{\mathcal {D}}}\limits ^{2d}}_{{\varvec{\upxi }}}^{(r)}\llbracket f \rrbracket _{{\check{A}}}= {\mathop {{\mathcal {D}}}\limits ^{2d}}_{{\varvec{\upxi }}}^{(r)}\mathbbm {f} \quad \quad {\mathop {{\mathcal {D}}}\limits ^{2d}}_{{\varvec{\upxi }}}^{(r)}=\left[ {\begin{array}{l} {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{1}}^{(r)} \\ {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{2}}^{\left( r \right) } \\ \end{array}} \right] . \end{aligned}$$
(A.9b)

The 1D integral operator in natural space is introduced as

$$\begin{aligned} I= & {} \int _{{\check{\varGamma }}} {f\left( \xi \right) \mathrm{d}\xi } = {\mathop {{\mathcal {S}}}\limits ^{1d}}_{\xi }\llbracket f \rrbracket _{{\check{\varGamma }}} = {\mathop {{\mathcal {S}}}\limits ^{1d}}_{\xi }\mathbbm {f}, \end{aligned}$$
(A.10a)
$$\begin{aligned} {\mathop {{\mathcal {S}}}\limits ^{1d}}_{\xi }= & {} \sum \limits _{r=0}^\infty {\mathbf{K }}_\mathrm{tay}^{\left( r \right) }{\mathop {{\mathcal {D}}}\limits ^{1d}}_{\xi }^{\left( r \right) }, \end{aligned}$$
(A.10b)
$$\begin{aligned} {\mathbf{K }}_\mathrm{tay}^{\left( r \right) }= & {} \left[ \frac{\left( {\varvec{\upxi }}_{;2}-{\varvec{\upxi }}_{;1} \right) ^{r+1}}{2^{r+1}\left( r+1 \right) !}\, \, \cdots \, \, \, \frac{\left( {\varvec{\upxi }}_{;i+1}-{\varvec{\upxi }}_{;i} \right) ^{r+1}-\left( {\varvec{\upxi }}_{;i-1}-{\varvec{\upxi }}_{;i} \right) ^{r+1}}{2^{r+1}\left( r+1 \right) !}\, \, \cdots \, \, \, \frac{\left( {\varvec{\upxi }}_{;n-1}-{\varvec{\upxi }}_{;n} \right) ^{r+1}}{2^{r+1}\left( r+1 \right) !} \right] .\qquad \quad \end{aligned}$$
(A.10c)

where \({\varvec{\upxi }}_{;i}\) denotes i-th element of \(\overline{{{\overline{\xi }}} }\) from Eq. (A.5).

For the 2D operator, one has

$$\begin{aligned} \mathrm {I}= & {} \int _{{\check{A}}} {f\left( \xi _{1},\xi _{2} \right) \mathrm{d}\xi _{1}\mathrm{d}\xi _{2}} = {\mathop {{\mathcal {S}}}\limits ^{2d}}_{\xi _{1}\xi _{2}}\llbracket f \rrbracket _{{\check{A}}} = {\mathop {{\mathcal {S}}}\limits ^{2d}}_{\xi _{1}\xi _{2}}\mathbbm {f}, \end{aligned}$$
(A.11a)
$$\begin{aligned} {\mathop {{\mathcal {S}}}\limits ^{2d}}_{\xi _{1}\xi _{2}}= & {} \left( {\mathop {{\mathcal {S}}}\limits ^{1d}}_{\xi _{2}} \circledast {\mathop {{\mathcal {S}}}\limits ^{1d}}_{\xi _{1}} \right) , \end{aligned}$$
(A.11b)

in which \({\mathop {{\mathcal {S}}}\limits ^{1d}}_{\xi _{1}}\) and \({\mathop {{\mathcal {S}}}\limits ^{1d}}_{\xi _{2}}\) are evaluated based on Eq. (A.10b).

1.3 Transformation

The following figure can be used to indicate the mapping procedure of physical arbitrary shape domain into regular computational one:

Fig. 16
figure 16

Mapping procedure of physical arbitrary shape domain into regular computational one

The shape functions are introduced as:

  • 1D (3-node element):

    $$\begin{aligned} \overline{{{\overline{\xi }}} }^{tp}= & {} \left[ {\begin{array}{ccc} -1 &{} 1 &{} 0\\ \end{array} } \right] ^{\mathrm {T}}, \end{aligned}$$
    (A.12a)
    $$\begin{aligned} L_{1}\left( \xi \right)= & {} 1 / 2\xi \left( \xi -1 \right) ,\, \, \, \, \, \, \, L_{2}\left( \xi \right) = 1 / 2\xi \left( \xi +1 \right) ,\, \, L_{3}\left( \xi \right) =\left( 1-\xi \right) \left( 1+\xi \right) , \end{aligned}$$
    (A.12b)
    $$\begin{aligned} {\mathbf{L }}= & {} \left[ {\begin{array}{ccc} L_{1} &{} L_{2} &{} L_{3}\\ \end{array} } \right] ^{\mathrm {T}}. \end{aligned}$$
    (A.12c)
  • 2D (8-node element):

    $$\begin{aligned}&{\varvec{\upxi }}_{{\mathbf {1}}}^{tp} = \left[ {\begin{array}{llllllll} -1 &{} 1 &{} 1 &{} -1 &{} 0 &{} 1 &{} 0 &{} -1\\ \end{array} } \right] ^{\mathrm {T}},\nonumber \\&{\varvec{\upxi }}_{{\mathbf {2}}}^{tp} = \left[ {\begin{array}{llllllll} -1 &{} -1 &{} 1 &{} 1 &{} -1 &{} 0 &{} 1 &{} 0\\ \end{array} } \right] ^{\mathrm {T}},\nonumber \\&\overline{{{\overline{\xi }}} }^{tp} = \left[ {\begin{array}{l} {\varvec{\upxi }}_{{\mathbf {1}}}^{tp} \\ {\varvec{\upxi }}_{{\mathbf {2}}}^{tp} \\ \end{array}} \right] , \end{aligned}$$
    (A.13a)
    $$\begin{aligned}&N_{m}\left( \xi _{1},\xi _{2} \right) = \frac{1}{4}\left( 1+\xi _{1}{\varvec{\upxi }}_{{\mathbf {1}};m}^{tp} \right) \left( 1+\xi _{2}{\varvec{\upxi }}_{{\mathbf {2}};m}^{tp} \right) \left( \xi _{1}{\varvec{\upxi }}_{{\mathbf {1}};m}^{tp}+\xi _{2}{\varvec{\upxi }}_{{\mathbf {2}};m}^{tp}-1 \right) ,\, \, \, \, \, \, \, \, m=1,2,3,4, \qquad \quad \end{aligned}$$
    (A.13b)
    $$\begin{aligned}&N_{m}\left( \xi _{1},\xi _{2} \right) = \frac{1}{2}\left( 1-\xi _{1}^{2} \right) \left( 1+\xi _{2}{\varvec{\upxi }}_{{\mathbf {2}};m}^{tp} \right) ,\, \, \, \, \, \, \, \, m=5,7 \end{aligned}$$
    (A.13c)
    $$\begin{aligned}&N_{m}\left( \xi _{1},\xi _{2} \right) = \frac{1}{2}\left( 1-\xi _{2}^{2} \right) \left( 1+\xi _{1}{\varvec{\upxi }}_{{\mathbf {1}};m}^{tp} \right) ,\, \, \, \, \, \, \, \, m=6,8 \end{aligned}$$
    (A.13d)
    $$\begin{aligned}&\hbox {where} \,{\varvec{\upxi }}_{{\mathbf {I}};j}^{tp}\text { is the }j\text {-th element of }{\varvec{\upxi }}_{{\mathbf {I}}}^{tp}\text { from Eq. (A.13a)}. \end{aligned}$$
    (A.13e)
    $$\begin{aligned}&{\mathbf{N }} = \left[ {\begin{array}{*{20}c} N_{1} &{} N_{2} &{} {\cdots } &{} N_{8}\\ \end{array} } \right] ^{\mathrm {T}}, \end{aligned}$$
    (A.13f)

The discretized forms are given as follows:

  • 1D:

    $$\begin{aligned} {\mathbf{L }}_{{\mathbf {1}}}= & {} \llbracket L_{1} \rrbracket _{A}=1 / 2\overline{{{\overline{\xi }}} }\circ \left( \overline{{{\overline{\xi }}} }-1 \right) ,\, \, \end{aligned}$$
    (A.14a)
    $$\begin{aligned} {\mathbf{L }}_{{\mathbf {2}}}= & {} \llbracket L_{2} \rrbracket _{A}=1 / 2\overline{{{\overline{\xi }}} }\circ \left( \overline{{{\overline{\xi }}} }+1 \right) , \end{aligned}$$
    (A.14b)
    $$\begin{aligned} {\mathbf{L }}_{{\mathbf {3}}}= & {} \llbracket L_{3} \rrbracket _{A}=\left( 1-\overline{{{\overline{\xi }}} } \right) \circ \left( 1+\overline{{{\overline{\xi }}} } \right) ,\, \, \end{aligned}$$
    (A.14c)
    $$\begin{aligned} {{\mathbb {L}}}= & {} \llbracket L \rrbracket _{A}=\left[ {\begin{array}{ccc} {\mathbf{L }}_{{\mathbf{1 }}}^{\mathrm {T}} &{} {\mathbf{L }}_{{\mathbf{2 }}}^{\mathrm {T}} &{} {\mathbf{L }}_{{\mathbf {3}}}^{\mathrm {T}}\\ \end{array} } \right] ^{\mathrm {T}}, \end{aligned}$$
    (A.14d)

    where \(\overline{{{\overline{\xi }}} }\) is evaluated using Eq. (A.5).

  • 2D:

    $$\begin{aligned} {\mathbb {N}}_{{{\varvec{M}}}}= & {} \llbracket N_{m} \rrbracket _{A}=\frac{1}{4}\left( 1+{\varvec{\upxi }}_{{\mathbf{1 }}}{\varvec{\upxi }}_{{\mathbf {1}};m}^{tp} \right) \circ \left( 1+{\varvec{\upxi }}_{{\mathbf{2 }}}{\varvec{\upxi }}_{{\mathbf {2}};m}^{tp} \right) \circ \left( {\varvec{\upxi }}_{{\mathbf{1 }}}{\varvec{\upxi }}_{{\mathbf {1}};m}^{tp}+{\varvec{\upxi }}_{{\mathbf{2 }}}{\varvec{\upxi }}_{{\mathbf {2}};m}^{tp}-1 \right) , \quad m=1,2,3,4 \qquad \quad \nonumber \\\end{aligned}$$
    (A.15a)
    $$\begin{aligned} {\mathbb {N}}_{{{\varvec{M}}}}= & {} \llbracket N_{m} \rrbracket _{A}=\frac{1}{2}\left( 1-{\varvec{\upxi }}_{{\mathbf {1}}}^{\circ 2} \right) \circ \left( 1+{\varvec{\upxi }}_{{\mathbf{2 }}}{\varvec{\upxi }}_{{\mathbf {2}};m}^{tp} \right) , \quad m=5,7 \end{aligned}$$
    (A.15b)
    $$\begin{aligned} {\mathbb {N}}_{{{\varvec{M}}}}= & {} \llbracket N_{m} \rrbracket _{A}=\frac{1}{2}\left( 1-{\varvec{\upxi }}_{{\mathbf {2}}}^{\circ 2} \right) \left( 1+{\varvec{\upxi }}_{{\mathbf{1 }}}{\varvec{\upxi }}_{{\mathbf {1}};m}^{tp} \right) , \quad m=6,8 \end{aligned}$$
    (A.15c)
    $$\begin{aligned} {{\mathbb {N}}}= & {} \left[ {\begin{array}{cccc} {\mathbf{N }}_{{\mathbf{1 }}}^{\mathrm {T}} &{} {\mathbf{N }}_{{\mathbf{2 }}}^{\mathrm {T}} &{} {{\cdots }} &{} {\mathbf{N }}_{{\mathbf {8}}}^{\mathrm {T}}\\ \end{array} } \right] ^{\mathrm {T}}, \end{aligned}$$
    (A.15d)

where \({\varvec{\upxi }}_{{\mathbf{1 }}}\) and \({\varvec{\upxi }}_{{\mathbf{2 }}}\) evaluated from Eq. (A.6a).

1.3.1 Position field

The vector-matrix forms are given as follows:

  • 1D:

    $$\begin{aligned} \mathrm {X}\left( \xi \right)= & {} \sum \limits _{m=1}^3 {L_{m}{\mathbf{X }}_{:;m}^{tp}} =\left[ {\begin{array}{ccc} L_{1} &{} L_{2} &{} L_{3}\\ \end{array} } \right] \left[ {\begin{array}{l} {\mathbf{X }}_{;1}^{tp} \\ {\mathbf{X }}_{;2}^{tp} \\ {\mathbf{X }}_{;3}^{tp} \\ \end{array}} \right] ={\mathbf{L }}_{X}^{\mathrm {T}}{{\mathbb {X}}}^{tp}, \end{aligned}$$
    (A.16a)
    $$\begin{aligned} {{\mathbb {X}}}^{tp}= & {} \left[ {\mathbf{X }}_{;1}^{tp}\, \, {\mathbf{X }}_{;2}^{tp}\, \, {\mathbf{X }}_{;3}^{tp} \right] ^{\mathrm {T}}, \end{aligned}$$
    (A.16b)

    where \({\mathbf{X }}_{;i}^{tp}\) is the Cartesian coordinate of \(i-\)th transformation node.

  • 2D:

    $$\begin{aligned}&\left\{ {\begin{array}{l} X_{1}\left( \xi _{1},\xi _{2} \right) =\sum \limits _{m=1}^8 {N_{m}{\mathbf{X }}_{{\mathbf {1}};m}^{tp}} =\left[ {\begin{array}{ccc} N_{1} &{} \cdots &{} N_{8}\\ \end{array} } \right] \left[ {\begin{array}{l} {\mathbf{X }}_{{\mathbf {1}};1}^{tp} \\ \vdots \\ {\mathbf{X }}_{{\mathbf {1}};8}^{tp} \\ \end{array}} \right] ={\mathbf{N }}_{X}^{\mathrm {T}}{\mathbf{X }}_{{\mathbf {1}}}^{tp}\\ X_{2}\left( \xi _{1},\xi _{2} \right) =\sum \limits _{m=1}^8 {N_{m}{\mathbf{X }}_{{\mathbf {2}};m}^{tp}} =\left[ {\begin{array}{ccc} N_{1} &{} \cdots &{} N_{8}\\ \end{array} } \right] \left[ {\begin{array}{l} {\mathbf{X }}_{{\mathbf {2}};1}^{tp} \\ \vdots \\ {\mathbf{X }}_{{\mathbf {2}};8}^{tp} \\ \end{array}} \right] ={\mathbf{N }}_{X}^{\mathrm {T}}{\mathbf{X }}_{{\mathbf {2}}}^{tp} \\ \end{array}} \right. , \end{aligned}$$
    (A.17a)
    $$\begin{aligned}&{\mathbf{X }}\left( {\varvec{\upxi }} \right) = \left[ {\begin{array}{l} X_{1} \\ X_{2} \\ \end{array}} \right] = \left[ {\begin{array}{l} {\mathbf{N }}_{X}^{\mathrm {T}}{\mathbf{X }}_{1}^{tp} \\ {\mathbf{N }}_{X}^{\mathrm {T}}{\mathbf{X }}_{2}^{tp} \\ \end{array}} \right] = \left[ {\begin{array}{ll} {\mathbf{N }}_{X}^{\mathrm {T}} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} {\mathbf{N }}_{X}^{\mathrm {T}}\\ \end{array} } \right] \left[ {\begin{array}{l} {\mathbf{X }}_{{\mathbf {1}}}^{tp} \\ {\mathbf{X }}_{{\mathbf {2}}}^{tp} \\ \end{array}} \right] = \left( {\mathbf{I }}_{2} \circledast {\mathbf{N }}_{X}^{\mathrm {T}} \right) \left[ {\begin{array}{l} {\mathbf{X }}_{{\mathbf {1}}}^{tp} \\ {\mathbf{X }}_{{\mathbf {2}}}^{tp} \\ \end{array}} \right] = {\mathbf{N }}_{X}^{{\varvec{*}}}{{\mathbb {X}}}^{tp}, \end{aligned}$$
    (A.17b)

    where \(\left[ {\begin{array}{l} {\mathbf{X }}_{{\mathbf {1}};i}^{tp} \\ {\mathbf{X }}_{{\mathbf {2}};i}^{tp} \\ \end{array}} \right] \) is the Cartesian coordinate of \(i-\)th transformation node. Also,

    $$\begin{aligned} {{\mathbb {X}}}^{tp}= & {} \left[ {\begin{array}{l} {\mathbf{X }}_{{\mathbf {1}}}^{tp} \\ {\mathbf{X }}_{{\mathbf {2}}}^{tp} \\ \end{array}} \right] = \left[ {\mathbf{X }}_{{\mathbf {1}};1}^{tp}\, \, \cdots \, \, {\mathbf{X }}_{{\mathbf {1}};8}^{tp}\, \, {\mathbf{X }}_{{\mathbf {2}};1}^{tp}\, \, \cdots \, \, {\mathbf{X }}_{{\mathbf {2}};8}^{tp} \right] ^{\mathrm {T}}, \end{aligned}$$
    (A.17c)
    $$\begin{aligned} {\mathbf{N }}_{X}^{{\varvec{*}}}= & {} \left( {\mathbf{I }}_{2} \circledast {\mathbf{N }}_{X}^{\mathrm {T}} \right) . \end{aligned}$$
    (A.17d)

Discretized forms are also expressed as:

  • 1D:

    $$\begin{aligned} {{\mathbb {X}}}=\llbracket X \rrbracket _{\varGamma } = \left[ {\begin{array}{lll} {\mathbf{L }}_{{\mathbf{1 }}} &{} {\mathbf{L }}_{{\mathbf{2 }}} &{} {\mathbf{L }}_{{\mathbf{3 }}}\\ \end{array} } \right] {{\mathbb {X}}}^{tp} \end{aligned}$$
    (A.18)
  • 2D:

    $$\begin{aligned} {{\mathbb {X}}}= & {} \llbracket {\mathbf{X }} \rrbracket _{A}=\left[ {\begin{array}{l} {\mathbf{X }}_{{\mathbf {1}}} \\ {\mathbf{X }}_{{\mathbf {2}}} \\ \end{array}} \right] ={{\mathbb {N}}}_{X}^{{\varvec{*}}}{{\mathbb {X}}}^{tp}, \end{aligned}$$
    (A.19a)
    $$\begin{aligned} {{\mathbb {N}}}_{X}^{{\varvec{*}}}= & {} \llbracket {\mathbf{N }}_{X}^{{\varvec{*}}} \rrbracket _{A} = \left( {\mathbf{I }}_{2} \circledast \left[ {\begin{array}{llll} {\mathbf{N }}_{{\mathbf{1 }}} &{} {\mathbf{N }}_{{\mathbf{2 }}} &{} {{\cdots }} &{} {\mathbf{N }}_{{\mathbf {8}}}\\ \end{array} } \right] \right) . \end{aligned}$$
    (A.19b)

1.3.2 Derivative transformation (Cartesian derivative):

Vector-matrix form:

  • 1D transformation:

    $$\begin{aligned} f_{,\xi }= & {} j_{tr}^{1d}f_{,X}\, \, \, \, \, \, \, \, \Rightarrow \, \, \, \, \, \, \, f_{,X}=j_{tr}^{1d\, -1}f_{{,}\xi }, \end{aligned}$$
    (A.20a)
    $$\begin{aligned} j_{tr}^{1d}= & {} X_{,\xi },\, \, \, \, \, \, \, \, \, j_{tr}^{1d\, -1}=\, 1/\, X_{,\xi }. \end{aligned}$$
    (A.20b)
  • 2D transformation:

    $$\begin{aligned} f_{,{\varvec{\upxi }}}= & {} {\mathbf{J }}_{tr}^{2d}f_{,{\mathbf{X }}}\, \, \, \, \, \, \, \, \, \Rightarrow \, \, \, \, \, \, \, \, \, \, f_{,{\mathbf{X }}}={\mathbf{J }}_{tr}^{\mathrm {2d\, -1}}f_{,{\varvec{\upxi }}}, \end{aligned}$$
    (A.21a)
    $$\begin{aligned} {\mathbf{J }}_{tr}^{2d}= & {} \left[ {\begin{array}{ll} \frac{\partial X_{1}}{\partial \xi _{1}} &{} \frac{\partial X_{2}}{\partial \xi _{1}}\\ \frac{\partial X_{1}}{\partial \xi _{2}} &{} \frac{\partial X_{2}}{\partial \xi _{2}}\\ \end{array} } \right] {,\, \, \, \, \, \, \, \, \, \, \, \, \, \, }{\mathbf{J }}_{tr}^{\mathrm {2d\, -1}}=\frac{1}{j_{tr}^{2d}}\left[ {\begin{array}{ll} \frac{\partial X_{2}}{\partial \xi _{2}} &{} -\frac{\partial X_{2}}{\partial \xi _{1}}\\ -\frac{\partial X_{1}}{\partial \xi _{2}} &{} \frac{\partial X_{1}}{\partial \xi _{1}}\\ \end{array} } \right] , \end{aligned}$$
    (A.21b)

    Discretized form:

  • 1D transformation:

    $$\begin{aligned} \mathbbm {f}_{,{\mathbf{X }}}= & {} \llbracket f_{,X} \rrbracket _{\varGamma } = {\mathop {{\mathcal {D}}}\limits ^{1d}}_{X}\mathbbm {f}, \end{aligned}$$
    (A.22a)
    $$\begin{aligned} {\mathop {{\mathcal {D}}}\limits ^{1d}}_{X}= & {} \left( {\mathbf{I }}_{2} \circledast \langle \left( \mathop {\mathbbm {j}}\nolimits ^{1d}_{tr}\right) ^{\circ -1}\rangle \right) {\mathop {{\mathcal {D}}}\limits ^{1d}}_{\xi }, \end{aligned}$$
    (A.22b)
    $$\begin{aligned} \mathbbm {j}_{tr}^{1d}= & {} \llbracket j_{tr}^{\mathrm {1}d} \rrbracket _{\varGamma }= {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi }{\mathbb {X}}, \end{aligned}$$
    (A.22c)

    where \({\mathbb {X}}\) is evaluated from Eq. (A.18).

  • 2D transformation:

    $$\begin{aligned} \mathbbm {f}_{,{{\mathbb {X}}}}= & {} \llbracket f_{,{\mathbf{X }}} \rrbracket _{A} = {\mathop {{\mathcal {D}}}\limits ^{2d}}_{{\mathbf{X }}}\mathbbm {f}, \nonumber \\&\quad \left\{ {\begin{array}{l} \mathbbm {f}_{,{\mathbf{X }}_{{\mathbf{1 }}}}=\llbracket f_{,X_{1}} \rrbracket _{A}= {\mathop {{\mathcal {D}}}\limits ^{2d}}_{X_{1}}\mathbbm {f} \\ \mathbbm {f}_{,{\mathbf{X }}_{{\mathbf{2 }}}}=\llbracket f_{,X_{2}} \rrbracket _{A}= {\mathop {{\mathcal {D}}}\limits ^{2d}}_{X_{2}}\mathbbm {f} \\ \end{array}} \right. , \end{aligned}$$
    (A.23a)
    $$\begin{aligned} {\mathop {{\mathcal {D}}}\limits ^{2d}}_{{\mathbf{X }}}= & {} \left( {\mathbf{I }}_{2} \circledast \langle \left( \mathop {\mathbbm {j}}\nolimits ^{1d}_{tr}\right) ^{\circ -1}\rangle \right) \, \left[ {\begin{array}{cc} \langle {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{2}} \mathbf{X }_{\mathbf{2 }} \rangle &{} -\langle {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{1}} \mathbf{X }_{\mathbf{2 }} \rangle \\ -\langle {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{2}} \mathbf{X }_{\mathbf{1 }} \rangle &{} \langle {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{1}} \mathbf{X }_{\mathbf{1 }} \rangle \\ \end{array} } \right] {\mathop {{\mathcal {D}}}\limits ^{2d}}_{{\varvec{\upxi }}}, \end{aligned}$$
    (A.23b)
    $$\begin{aligned} \mathbbm {j}_{tr}^{2d}= & {} \llbracket \left| {\mathbf{J }}_{tr}^{2d} \right| \rrbracket _{A}=\left( {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{1}}{\mathbf{X }}_{{\mathbf {1}}} \right) \circ \left( {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{2}}{\mathbf{X }}_{{\mathbf {2}}} \right) -\left( {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{1}}{\mathbf{X }}_{{\mathbf {2}}} \right) \circ \left( {\mathop {{\mathcal {D}}}\limits ^{2d}}_{\xi _{2}}{\mathbf{X }}_{{\mathbf {1}}} \right) , \end{aligned}$$
    (A.23c)

where \({\mathbf{X }}_{{\mathbf {1}}}\) and \({\mathbf{X }}_{{\mathbf {2}}}\) are evaluated from Eq. (A.19a).

1.3.3 Integral transformation (Cartesian integral):

  • 1D integration:

    $$\begin{aligned} I = \int _\varGamma {f\left( s \right) ds} = {\mathop {{\mathcal {S}}}\limits ^{1d}}_{s}\llbracket f \rrbracket _{\varGamma }= {\mathop {{\mathcal {S}}}\limits ^{1d}}_{s}\mathbbm {f}, \quad \quad {\mathop {{\mathcal {S}}}\limits ^{1d}}_{s}= {\mathop {{\mathcal {S}}}\limits ^{1d}}_{\xi } \langle \mathop {\mathbbm {j}}\nolimits ^{1d}_{tr}\rangle . \end{aligned}$$
    (A.24)
  • 2D operator:

    $$\begin{aligned} I = \int _A {f\left( X_{1},X_{2} \right) dX_{1}dX_{2}} = {\mathop {{\mathcal {S}}}\limits ^{2d}}_{X_{1}X_{2}}\llbracket f \rrbracket _{A}= {\mathop {{\mathcal {S}}}\limits ^{2d}}_{X_{1}X_{2}}\mathbbm {f},\qquad {\mathop {{\mathcal {S}}}\limits ^{2d}}_{X_{1}X_{2}} = {\mathop {{\mathcal {S}}}\limits ^{2d}}_{\xi _{1}\xi _{2}} \langle \mathop {\mathbbm {j}}\nolimits ^{2d}_{tr}\rangle . \end{aligned}$$
    (A.25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, R., Ansari, R. & Rouhi, H. An efficient numerical method to solve the problems of 2D incompressible nonlinear elasticity. Continuum Mech. Thermodyn. 34, 1–21 (2022). https://doi.org/10.1007/s00161-021-01063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01063-7

Keywords

Navigation