Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical translation of long-acting drug delivery formulations

Abstract

Most pharmaceuticals are given using short-acting formulations that require frequent administration, which can negatively affect patient compliance and increase failure risks associated with inconsistent use. By contrast, long-acting release formulations can achieve sustained release of drugs for weeks, months or years. In this Review, we discuss long-acting drug delivery formulations that release drugs for at least 1 month and that have received approval from the US Food and Drug Administration (FDA), with an emphasis on materials used in their formulation. We highlight different slow-release mechanisms, including dissolution-based, biodegradation-based (preformed and in situ-formed), non-degradable implantable and hydrogel-based formulations, and investigate the clinical applications of long-acting drug delivery formulations, including long-acting contraceptives, extended sex hormone suppression, opioid and alcohol addiction treatments and localized drug delivery to the eye. Finally, we summarize release mechanisms, delivery duration, pharmaceutical forms, administration routes, indications, manufacturers and inactive ingredients of 63 FDA-approved long-acting drug products. We conclude by looking at the future challenges and opportunities for long-acting drug delivery formulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of long-acting delivery formulations.
Fig. 2: Characteristics of FDA-approved products with long-acting drug delivery.
Fig. 3: FDA-approved products with long-acting delivery formulations.

Similar content being viewed by others

References

  1. Allen, L. V. & Ansel, H. C. in Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems 10th edn (Lippincott Williams & Wilkins, 2017).

  2. Osterberg, L. & Blaschke, T. Adherence to medication. N. Engl. J. Med. 353, 487–497 (2005).

    Article  CAS  Google Scholar 

  3. Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    Article  CAS  Google Scholar 

  4. Yun, Y. H., Lee, B. K. & Park, K. Controlled drug delivery: historical perspective for the next generation. J. Control. Release 219, 2–7 (2015).

    Article  CAS  Google Scholar 

  5. Park, K. et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J. Control. Release 304, 125–134 (2019).

    Article  CAS  Google Scholar 

  6. Burgess, D. J. & Wright, J. C. in Long Acting Injections and Implants (eds Wright, J. C. & Burgess, D. J.) 1–9 (Springer, 2012).

  7. Sun, Y., Scruggs, D. W., Peng, Y., Johnson, J. R. & Shukla, A. J. Issues and challenges in developing long-acting veterinary antibiotic formulations. Adv. Drug Deliv. Rev. 56, 1481–1496 (2004).

    Article  CAS  Google Scholar 

  8. Wright, J. C. & Hoffman, A. S. in Long Acting Injections and Implants (eds Wright, J. C. & Burgess, D. J.) 11–24 (Springer, 2012).

  9. Morishita, M. & Peppas, N. A. Is the oral route possible for peptide and protein drug delivery? Drug Discov. Today 11, 905–910 (2006).

    Article  CAS  Google Scholar 

  10. Herwadkar, A. & Banga, A. K. Peptide and protein transdermal drug delivery. Drug Discov. Today Technol. 9, e147–e154 (2012).

    Article  CAS  Google Scholar 

  11. Adjei, A. & Gupta, P. Pulmonary delivery of therapeutic peptides and proteins. J. Control. Release 29, 361–373 (1994).

    Article  CAS  Google Scholar 

  12. Keizer, R. J., Huitema, A. D., Schellens, J. H. & Beijnen, J. H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 49, 493–507 (2010).

    Article  CAS  Google Scholar 

  13. Shi, L., Hodges, M., Yurgin, N. & Boye, K. S. Impact of dose frequency on compliance and health outcomes: a literature review (1966–2006). Expert Rev. Pharmacoecon. Outcomes Res. 7, 187–202 (2007).

    Article  Google Scholar 

  14. US Food and Drug Administration. Lupron Depot. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=019732 (2014).

  15. Siegel, S. J. Extended release drug delivery strategies in psychiatry: theory to practice. Psychiatry 2, 22–31 (2005).

    Google Scholar 

  16. Park, E. J. et al. Long-acting injectable formulations of antipsychotic drugs for the treatment of schizophrenia. Arch. Pharm. Res. 36, 651–659 (2013).

    Article  CAS  Google Scholar 

  17. Haddad, P. M., Brain, C. & Scott, J. Nonadherence with antipsychotic medication in schizophrenia: challenges and management strategies. Patient Relat. Outcome Meas. 5, 43–62 (2014).

    Article  Google Scholar 

  18. Bangura, J. B., Xiao, S., Qiu, D., Ouyang, F. & Chen, L. Barriers to childhood immunization in sub-Saharan Africa: a systematic review. BMC Public Health 20, 1108 (2020).

    Article  Google Scholar 

  19. Flexner, C. HIV drug development: the next 25 years. Nat. Rev. Drug Discov. 6, 959–966 (2007).

    Article  CAS  Google Scholar 

  20. Blumenthal, P. D., Voedisch, A. & Gemzell-Danielsson, K. Strategies to prevent unintended pregnancy: increasing use of long-acting reversible contraception. Hum. Reprod. Update 17, 121–137 (2011).

    Article  CAS  Google Scholar 

  21. Weiser, J. R. & Saltzman, W. M. Controlled release for local delivery of drugs: barriers and models. J. Control. Release 190, 664–673 (2014).

    Article  CAS  Google Scholar 

  22. Jacob, S., Nair, A. B. & Shah, J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res. 24, 3 (2020).

    Article  CAS  Google Scholar 

  23. Ferguson, G. T., Hickey, A. J. & Dwivedi, S. Co-suspension delivery technology in pressurized metered-dose inhalers for multi-drug dosing in the treatment of respiratory diseases. Respir. Med. 134, 16–23 (2018).

    Article  Google Scholar 

  24. Edman, P. Pharmaceutical formulations — suspensions and solutions. J. Aerosol Med. 7, S3–S6 (1994).

    Article  CAS  Google Scholar 

  25. Patel, A., Cholkar, K., Agrahari, V. & Mitra, A. K. Ocular drug delivery systems: an overview. World J. Pharmacol. 2, 47–64 (2013).

    Article  CAS  Google Scholar 

  26. Patel, V. R. & Agrawal, Y. K. Nanosuspension: an approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res. 2, 81–87 (2011).

    Article  CAS  Google Scholar 

  27. Owen, A. & Rannard, S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: insights for applications in HIV therapy. Adv. Drug Deliv. Rev. 103, 144–156 (2016).

    Article  CAS  Google Scholar 

  28. van Hoogevest, P., Liu, X. & Fahr, A. Drug delivery strategies for poorly water-soluble drugs: the industrial perspective. Expert Opin. Drug Deliv. 8, 1481–1500 (2011).

    Article  CAS  Google Scholar 

  29. Rogueda, P. Novel hydrofluoroalkane suspension formulations for respiratory drug delivery. Expert Opin. Drug Deliv. 2, 625–638 (2005).

    Article  CAS  Google Scholar 

  30. Rabinow, B. E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 3, 785–796 (2004).

    Article  CAS  Google Scholar 

  31. Moghimipour, E., Salimi, A., Rezaee, S., Balack, M. & Handali, S. Influence of flocculating agents and structural vehicles on the physical stability and rheological behavior of nitrofurantoin suspension. Jundishapur J. Nat. Pharm. Prod. 9, e12716 (2014).

    Article  Google Scholar 

  32. Wu, J. P. & Pickle, S. Extended use of the intrauterine device: a literature review and recommendations for clinical practice. Contraception 89, 495–503 (2014).

    Article  Google Scholar 

  33. Anderson, J. M. & Shive, M. S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 64, 72–82 (2012).

    Article  Google Scholar 

  34. Zong, X. et al. Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Biomacromolecules 4, 416–423 (2003).

    Article  CAS  Google Scholar 

  35. Pan, P. et al. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(d-lactic acid) racemic blends: molecular weight effects. J. Phys. Chem. B 119, 6462–6470 (2015).

    Article  CAS  Google Scholar 

  36. Dash, T. K. & Konkimalla, V. B. Poly-ϵ-caprolactone based formulations for drug delivery and tissue engineering: a review. J. Control. Release 158, 15–33 (2012).

    Article  CAS  Google Scholar 

  37. Gopferich, A. & Tessmar, J. Polyanhydride degradation and erosion. Adv. Drug Deliv. Rev. 54, 911–931 (2002).

    Article  CAS  Google Scholar 

  38. Domb, A. J. et al. in Polymeric Biomaterials (ed. Dumitriu, S.) 91–122 (Marcel Dekker, 2001).

  39. van de Weert, M., Hennink, W. E. & Jiskoot, W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17, 1159–1167 (2000).

    Article  Google Scholar 

  40. Estey, T., Kang, J., Schwendeman, S. P. & Carpenter, J. F. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J. Pharm. Sci. 95, 1626–1639 (2006).

    Article  CAS  Google Scholar 

  41. Pillai, O. & Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol. 5, 447–451 (2001).

    Article  CAS  Google Scholar 

  42. Goldenberg, I. S. Catgut, silk, and silver — the story of surgical sutures. Surgery 46, 908–912 (1959).

    CAS  Google Scholar 

  43. Muffly, T. M., Tizzano, A. P. & Walters, M. D. The history and evolution of sutures in pelvic surgery. J. R. Soc. Med. 104, 107–112 (2011).

    Article  Google Scholar 

  44. Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    Article  CAS  Google Scholar 

  45. Vroman, I. & Tighzert, L. Biodegradable polymers. Materials 2, 307–344 (2009).

    Article  CAS  Google Scholar 

  46. US Food and Drug Administration. Scenesse. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=210797 (2019).

  47. Hatefi, A. & Amsden, B. Biodegradable injectable in situ forming drug delivery systems. J. Control. Release 80, 9–28 (2002).

    Article  CAS  Google Scholar 

  48. Thakur, R. R., McMillan, H. L. & Jones, D. S. Solvent induced phase inversion-based in situ forming controlled release drug delivery implants. J. Control. Release 176, 8–23 (2014).

    Article  CAS  Google Scholar 

  49. Kempe, S. & Mader, K. In situ forming implants — an attractive formulation principle for parenteral depot formulations. J. Control. Release 161, 668–679 (2012).

    Article  CAS  Google Scholar 

  50. Packhaeuser, C. B., Schnieders, J., Oster, C. G. & Kissel, T. In situ forming parenteral drug delivery systems: an overview. Eur. J. Pharm. Biopharm. 58, 445–455 (2004).

    Article  CAS  Google Scholar 

  51. Parent, M. et al. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J. Control. Release 172, 292–304 (2013).

    Article  CAS  Google Scholar 

  52. Perez-Marreno, R. et al. A six-month, open-label study assessing a new formulation of leuprolide 7.5 mg for suppression of testosterone in patients with prostate cancer. Clin. Ther. 24, 1902–1914 (2002).

    Article  CAS  Google Scholar 

  53. Lee, B. K., Yun, Y. & Park, K. PLA micro- and nano-particles. Adv. Drug Deliv. Rev. 107, 176–191 (2016).

    Article  CAS  Google Scholar 

  54. Rungseevijitprapa, W. & Bodmeier, R. Injectability of biodegradable in situ forming microparticle systems (ISM). Eur. J. Pharm. Sci. 36, 524–531 (2009).

    Article  CAS  Google Scholar 

  55. Kranz, H. & Bodmeier, R. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Int. J. Pharm. 332, 107–114 (2007).

    Article  CAS  Google Scholar 

  56. Wischke, C. & Schwendeman, S. in Fundamentals and Applications of Controlled Release Drug Delivery (eds Siepmann, J., Siegel, R. A. & Rathbone. M. J.) 171–228 (Springer, 2012).

  57. Graham, P. D., Brodbeck, K. J. & McHugh, A. J. Phase inversion dynamics of PLGA solutions related to drug delivery. J. Control. Release 58, 233–245 (1999).

    Article  CAS  Google Scholar 

  58. McHugh, A. J. The role of polymer membrane formation in sustained release drug delivery systems. J. Control. Release 109, 211–221 (2005).

    Article  CAS  Google Scholar 

  59. Liu, H. & Venkatraman, S. S. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. J. Pharm. Sci. 101, 1783–1793 (2012).

    Article  CAS  Google Scholar 

  60. Luan, X. & Bodmeier, R. In situ forming microparticle system for controlled delivery of leuprolide acetate: influence of the formulation and processing parameters. Eur. J. Pharm. Sci. 27, 143–149 (2006).

    Article  CAS  Google Scholar 

  61. Stewart, S. A., Dominguez-Robles, J., Donnelly, R. F. & Larraneta, E. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers 10, 1379 (2018).

    Article  CAS  Google Scholar 

  62. Shastri, V. P. Non-degradable biocompatible polymers in medicine: past, present and future. Curr. Pharm. Biotechnol. 4, 331–337 (2003).

    Article  CAS  Google Scholar 

  63. Santos, A. et al. Drug-releasing implants: current progress, challenges and perspectives. J. Mater. Chem. B 2, 6157–6182 (2014).

    Article  CAS  Google Scholar 

  64. Silva, G. R. D., Fialho, S. L., Siqueira, R. C., Jorge, R. & Cunha Júnior, A. D. S. Implants as drug delivery devices for the treatment of eye diseases. Braz. J. Pharm. Sci. 46, 585–595 (2010).

    Article  Google Scholar 

  65. Dash, A. K. & Cudworth, G. C. 2nd Therapeutic applications of implantable drug delivery systems. J. Pharmacol. Toxicol. Methods 40, 1–12 (1998).

    Article  CAS  Google Scholar 

  66. Fu, Y. & Kao, W. J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7, 429–444 (2010).

    Article  CAS  Google Scholar 

  67. Odom, E. B., Eisenberg, D. L. & Fox, I. K. Difficult removal of subdermal contraceptive implants: a multidisciplinary approach involving a peripheral nerve expert. Contraception 96, 89–95 (2017).

    Article  Google Scholar 

  68. Glasier, A. Implantable contraceptives for women: effectiveness, discontinuation rates, return of fertility, and outcome of pregnancies. Contraception 65, 29–37 (2002).

    Article  Google Scholar 

  69. Mohtashami, Z., Esmaili, Z., Vakilinezhad, M. A., Seyedjafari, E. & Akbari Javar, H. Pharmaceutical implants: classification, limitations and therapeutic applications. Pharm. Dev. Technol. 25, 116–132 (2020).

    Article  CAS  Google Scholar 

  70. Danckwerts, M. & Fassihi, A. Implantable controlled release drug delivery systems — a review. Drug Dev. Ind. Pharm. 17, 1465–1502 (1991).

    Article  CAS  Google Scholar 

  71. Bourges, J. L. et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv. Drug Deliv. Rev. 58, 1182–1202 (2006).

    Article  CAS  Google Scholar 

  72. Martinez-Rus, F., Ferreiroa, A., Ozcan, M., Bartolome, J. F. & Pradies, G. Fracture resistance of crowns cemented on titanium and zirconia implant abutments: a comparison of monolithic versus manually veneered all-ceramic systems. Int. J. Oral Maxillofac. Implants 27, 1448–1455 (2012).

    Google Scholar 

  73. Kluin, O. S., van der Mei, H. C., Busscher, H. J. & Neut, D. Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin. Drug Deliv. 10, 341–351 (2013).

    Article  CAS  Google Scholar 

  74. Yasukawa, T. et al. Drug delivery systems for vitreoretinal diseases. Prog. Retin. Eye Res. 23, 253–281 (2004).

    Article  CAS  Google Scholar 

  75. Klemm, K. The use of antibiotic-containing bead chains in the treatment of chronic bone infections. Clin. Microbiol. Infect. 7, 28–31 (2000).

    Article  Google Scholar 

  76. Al-Jawadi, S., Capasso, P. & Sharma, M. The road to market implantable drug delivery systems: a review on US FDA’s regulatory framework and quality control requirements. Pharm. Dev. Technol. 23, 953–963 (2018).

    Article  CAS  Google Scholar 

  77. Keraliya, R. A. et al. Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharm. 2012, 528079 (2012).

    Google Scholar 

  78. Rohloff, C. M. et al. DUROS technology delivers peptides and proteins at consistent rate continuously for 3 to 12 months. J. Diabetes Sci. Technol. 2, 461–467 (2008).

    Article  Google Scholar 

  79. Wright, J. C., Chester, A. E., Skowronski, R. & Lucas, C. Long-term controlled delivery of therapeutic agents via an implantable osmotically driven system: the DUROS implant. Drugs Pharm. Sci. 126, 657–670 (2003).

    CAS  Google Scholar 

  80. Wykoff, C. C., Hariprasad, S. M. & Zhou, B. Innovation in neovascular age-related macular degeneration: consideration of brolucizumab, abicipar, and the port delivery system. Opthalmic Surg. Lasers Imaging Retina 49, 913–917 (2018).

    Article  Google Scholar 

  81. Chen, E. R. & Kaiser, P. K. Therapeutic potential of the ranibizumab port delivery system in the treatment of AMD: evidence to date. Clin. Ophthalmol. 14, 1349–1355 (2020).

    Article  CAS  Google Scholar 

  82. Renard, E., Costalat, G., Chevassus, H. & Bringer, J. Closed loop insulin delivery using implanted insulin pumps and sensors in type 1 diabetic patients. Diabetes Res. Clin. Pract. 74, S173–S177 (2006).

    Article  CAS  Google Scholar 

  83. Elleri, D., Dunger, D. B. & Hovorka, R. Closed-loop insulin delivery for treatment of type 1 diabetes. BMC Med. 9, 120 (2011).

    Article  CAS  Google Scholar 

  84. Labelle, M. A., Ispas-Szabo, P., Masseau, I., Chorfi, Y. & Mateescu, M. A. In vivo evaluation of targeted delivery of biological agents using barium sulfate. Int. J. Pharm. 572, 118801 (2019).

    Article  CAS  Google Scholar 

  85. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 1–17 (2016).

    Article  Google Scholar 

  86. Lin, C. C. & Metters, A. T. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58, 1379–1408 (2006).

    Article  CAS  Google Scholar 

  87. Vermonden, T., Censi, R. & Hennink, W. E. Hydrogels for protein delivery. Chem. Rev. 112, 2853–2888 (2012).

    Article  CAS  Google Scholar 

  88. Wichterle, O. & Lim, D. Hydrophilic gels for biological use. Nature 185, 117–118 (1960).

    Article  Google Scholar 

  89. Hoare, T. R. & Kohane, D. S. Hydrogels in drug delivery: progress and challenges. Polymer 49, 1993–2007 (2008).

    Article  CAS  Google Scholar 

  90. Peppas, N. A. Hydrogels and drug delivery. Curr. Opin. Colloid Interface Sci. 2, 531–537 (1997).

    Article  CAS  Google Scholar 

  91. Buwalda, S. J., Vermonden, T. & Hennink, W. E. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 18, 316–330 (2017).

    Article  CAS  Google Scholar 

  92. Caló, E. & Khutoryanskiy, V. V. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015).

    Article  CAS  Google Scholar 

  93. Ashley, G. W., Henise, J., Reid, R. & Santi, D. V. Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proc. Natl Acad. Sci. USA 110, 2318–2323 (2013).

    Article  CAS  Google Scholar 

  94. Larraneta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R. & Donnelly, R. F. Hydrogels for hydrophobic drug delivery. classification, synthesis and applications. J. Funct. Biomater. 9, 13 (2018).

    Article  CAS  Google Scholar 

  95. Hu, W., Wang, Z., Xiao, Y., Zhang, S. & Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 7, 843–855 (2019).

    Article  CAS  Google Scholar 

  96. Nguyen, M. K. & Alsberg, E. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci. 39, 1236–1265 (2014).

    Article  CAS  Google Scholar 

  97. Gibas, I. & Janik, H. Synthetic Polymer Hydrogels for Biomedical Applications (Lviv Polytechnic National Univ., 2010).

  98. Wona, G. & Janik, H. Review: synthetic polymer hydrogels forbiomedical application. Chem. Chem. Technol. 4, 297–304 (2010).

    Article  Google Scholar 

  99. Singh, S. K., Dhyani, A. & Juyal, D. Hydrogel: preparation, characterization and applications. Pharma Innov. 6, 25 (2017).

    CAS  Google Scholar 

  100. Ahmed, E. M. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015).

    Article  CAS  Google Scholar 

  101. Chun, C., Lee, S. M., Kim, S. Y., Yang, H. K. & Song, S. C. Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications. Biomaterials 30, 2349–2360 (2009).

    Article  CAS  Google Scholar 

  102. Lee, W. Y., Asadujjaman, M. & Jee, J.-P. Long acting injectable formulations: the state of the arts and challenges of poly (lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. J. Pharm. Investig. 49, 459–476 (2019).

    Article  CAS  Google Scholar 

  103. Natarajan, S. Anti-vascular endothelial growth factor in age-related macular degeneration: puzzle or a silent beginning! Indian J. Ophthalmol. 61, 475–478 (2013).

    Article  Google Scholar 

  104. Stewart, M. W. The study of intravitreal drug pharmacokinetics: does it matter? and if so, how? Expert Opin. Drug Metab. Toxicol. 14, 5–7 (2018).

    Article  Google Scholar 

  105. Li, Y. et al. Pharmacokinetics of Exenatide in nonhuman primates following its administration in the form of sustained-release PT320 and Bydureon. Sci. Rep. 9, 17208 (2019).

    Article  CAS  Google Scholar 

  106. Heres, S., Kraemer, S., Bergstrom, R. F. & Detke, H. C. Pharmacokinetics of olanzapine long-acting injection: the clinical perspective. Int. Clin. Psychopharmacol. 29, 299–312 (2014).

    Article  Google Scholar 

  107. Hetrick, E. M. & Schoenfisch, M. H. Reducing implant-related infections: active release strategies. Chem. Soc. Rev. 35, 780–789 (2006).

    Article  CAS  Google Scholar 

  108. Htay, T. & Liu, M. W. Drug-eluting stent: a review and update. Vasc. Health Risk Manag. 1, 263–276 (2005).

    Article  CAS  Google Scholar 

  109. US Food and Drug Administration. Resolute Onyx. FDA https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P160043 (2016).

  110. Uurto, I. et al. Drug-eluting biodegradable poly-d/l-lactic acid vascular stents: an experimental pilot study. J. Endovasc. Ther. 12, 371–379 (2005).

    Article  Google Scholar 

  111. Sanchez-Rexach, E., Meaurio, E. & Sarasua, J. R. Recent developments in drug eluting devices with tailored interfacial properties. Adv. Colloid Interfac. 249, 181–191 (2017).

    Article  CAS  Google Scholar 

  112. Goldstuck, N. D. Reducing barriers to the use of the intrauterine contraceptive device as a long acting reversible contraceptive. Afr. J. Reprod. Health 18, 15–25 (2014).

    Google Scholar 

  113. Palo, P. Transabdominal and transvaginal ultrasound detection of levonorgestrel IUD in the uterus. Acta Obstet. Gynecol. Scand. 76, 244–247 (1997).

    Article  CAS  Google Scholar 

  114. US Food and Drug Administration. Depo-Provera. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020246 (2010).

  115. Shoupe, D. & Mishell, D. R. Norplant: subdermal implant system for long-term contraception. Am. J. Obstet. Gynecol. 160, 1286–1292 (1989).

    Article  CAS  Google Scholar 

  116. US Food Drug and Administration. Nexplanon. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021529 (2015).

  117. Crawford, E. D., Moul, J. W., Sartor, O. & Shore, N. D. Extended release, 6-month formulations of leuprolide acetate for the treatment of advanced prostate cancer: achieving testosterone levels below 20 ng/dl. Expert Opin. Drug Metab. Toxicol. 11, 1465–1474 (2015).

    Article  CAS  Google Scholar 

  118. US Food and Drug Administration. Lupron Depot. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=019732 (2010).

  119. Zhou, J. et al. Reverse engineering the 1-month Lupron Depot(R). AAPS J. 20, 105 (2018).

    Article  CAS  Google Scholar 

  120. Sartor, O. Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology 61, 25–31 (2003).

    Article  Google Scholar 

  121. US Food and Drug Administration. EligardKit. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021343 (2011).

  122. Wright, J. C. et al. An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J. Control. Release 75, 1–10 (2001).

    Article  CAS  Google Scholar 

  123. US Food and Drug Administration. Viadur. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021088 (2005).

  124. World Health Organization. Global status report on alcohol and health 2018 (WHO, 2018).

  125. Fairbanks, J. et al. Evidence-based pharmacotherapies for alcohol use disorder: clinical pearls. Mayo Clin. Proc. 95, 1964–1977 (2020).

    Article  CAS  Google Scholar 

  126. Azadfard, M., Huecker, M. R. & Leaming, J. M. Opioid Addiction (StatPearls, 2019).

  127. Sinha, R. New findings on biological factors predicting addiction relapse vulnerability. Curr. Psychiat. Rep. 13, 398–405 (2011).

    Article  Google Scholar 

  128. Farid, W. O., Dunlop, S. A., Tait, R. J. & Hulse, G. K. The effects of maternally administered methadone, buprenorphine and naltrexone on offspring: review of human and animal data. Curr. Neuropharmacol. 6, 125–150 (2008).

    Article  CAS  Google Scholar 

  129. Neale, J., Tompkins, C. N. E., McDonald, R. & Strang, J. Implants and depot injections for treating opioid dependence: qualitative study of people who use or have used heroin. Drug Alcohol Depend. 189, 1–7 (2018).

    Article  CAS  Google Scholar 

  130. Goodbar, N. H. & Hanlon, K. E. Implantable buprenorphine (Probuphine) for maintenance treatment of opioid dependence. Am. Fam. Physician 97, 668–670 (2018).

    Google Scholar 

  131. US Food and Drug Administration. Probuphine. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=204442 (2016).

  132. Ling, W., Shoptaw, S. & Goodman-Meza, D. Depot buprenorphine injection in the management of opioid use disorder: from development to implementation. Subst. Abuse Rehabil. 10, 69–78 (2019).

    Article  Google Scholar 

  133. US Food and Drug Administration. Sublocade. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=209819 (2017).

  134. Syed, Y. Y. & Keating, G. M. Extended-release intramuscular naltrexone (VIVITROL): a review of its use in the prevention of relapse to opioid dependence in detoxified patients. CNS Drugs 27, 851–861 (2013).

    Article  CAS  Google Scholar 

  135. US Food and Drug Administration. Vivitrol. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process (2010).

  136. Hua, Y. et al. Key factor study for generic long-acting PLGA microspheres based on a reverse engineering of vivitrol. Molecules 26, 1247 (2021).

    Article  CAS  Google Scholar 

  137. Sharifi, F., Otte, A., Yoon, G. & Park, K. Continuous in-line homogenization process for scale-up production of naltrexone-loaded PLGA microparticles. J. Control. Release 325, 347–358 (2020).

    Article  CAS  Google Scholar 

  138. Gote, V., Sikder, S., Sicotte, J. & Pal, D. Ocular drug delivery: present innovations and future challenges. J. Pharmacol. Exp. Ther. 370, 602–624 (2019).

    Article  CAS  Google Scholar 

  139. Chang, J. N. in Handbook of Non-Invasive Drug Delivery Systems (ed. Kulkarni, V. S.) 165–192 (Elsevier, 2010).

  140. Cholkar, K., Vadlapudi, A. D., Trinh, H. M. & Mitra, A. K. in Ocular Pharmacology and Toxicology (ed. Gilger, B. C.) 91–118 (Springer, 2013).

  141. Musch, D. C., Martin, D. F., Gordon, J. F., Davis, M. D., Kuppermann, B. D. & the Ganciclovir Implant Study Group. Treatment of cytomegalovirus retinitis with a sustained-release ganciclovir implant. N. Engl. J. Med. 337, 83–90 (1997).

  142. Pearce, W. A., Yeh, S. & Fine, H. F. Management of cytomegalovirus retinitis in HIV and non-HIV patients. Ophthalmic Surg. Lasers Imaging Retina 47, 103–107 (2016).

    Article  Google Scholar 

  143. Choonara, Y. E., Pillay, V., Danckwerts, M. P., Carmichael, T. R. & du Toit, L. C. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J. Pharm. Sci. 99, 2219–2239 (2010).

    Article  CAS  Google Scholar 

  144. Stevenson, C. L., Santini, J. T. Jr & Langer, R. Reservoir-based drug delivery systems utilizing microtechnology. Adv. Drug Deliv. Rev. 64, 1590–1602 (2012).

    Article  CAS  Google Scholar 

  145. Kane, F. E., Burdan, J., Cutino, A. & Green, K. E. Iluvien (TM): a new sustained delivery technology for posterior eye disease. Expert Opin. Drug Deliv. 5, 1039–1046 (2008).

    Article  CAS  Google Scholar 

  146. Wu, X. N. & Lim, L. in Treatment of Non-infectious Uveitis (Lin, P. & Suhler, E.) 157–177 (Springer, 2019).

  147. Lee, S. S., Hughes, P., Ross, A. D. & Robinson, M. R. Biodegradable implants for sustained drug release in the eye. Pharm. Res. 27, 2043–2053 (2010).

    Article  CAS  Google Scholar 

  148. US Food and Drug Administration. Durysta. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=211911 (2020).

  149. US Food and Drug Administration. Dextenza. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=208742 (2019).

  150. Gibaldi, M. & Levy, G. Pharmacokinetics in clinical practice. I. Concepts. JAMA 235, 1864–1867 (1976).

    Article  CAS  Google Scholar 

  151. Wagner, J. G. History of pharmacokinetics. Pharmacol. Ther. 12, 537–562 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Clarivate and PharmaCircle identified, tabulated and partially curated the data about the drug products addressed in this study. We thank D. Bondy for administrative support. This publication is made possible by the generous support of the American people through the US Agency for International Development (USAID) and was prepared under a subaward funded by Family Health International (FHI 360) under cooperative agreement no. AID-OAA-15-00045 funded by USAID. This work was also supported by the Bill and Melinda Gates Foundation (BMGF) through an agreement funded by FHI Partners under grant no. OPP1200867. The content of this publication does not necessarily reflect the views, analysis or policies of FHI 360, FHI Partners, USAID, BMGF or the US Government, nor does any mention of trade names, commercial products or organizations imply endorsement by FHI 360, FHI Partners, USAID, BMGF or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

W.L.: Conceptualization, formal analysis, investigation, data curation, writing of the original draft and visualization. J.T.: Formal analysis, investigation and writing of the original draft. T.R.T.: Resources, data curation, writing of the original draft and reviewing and editing. D.L.: Resources, data curation, writing of the original draft and reviewing and editing. S.P.S.: Formal analysis, writing of the original draft, reviewing and editing, and supervision. M.R.P.: Conceptualization, methodology, formal analysis, resources, data curation, writing of the original draft, reviewing and editing, visualization, supervision, project administration and funding acquisition.

Corresponding author

Correspondence to Mark R. Prausnitz.

Ethics declarations

Competing interests

M.R.P. is an inventor of patents licensed to companies developing microneedle-based products, is a paid adviser to companies developing microneedle-based products and is a founder/shareholder of companies developing microneedle-based products (Micron Biomedical, Clearside Biomedical). This potential conflict of interest has been disclosed and is managed by Georgia Tech. W.L. is an inventor on a pending patent licensed to a company developing microneedle-based products. S.P.S. is an inventor of patents optioned to companies developing long-acting release products and is a paid consultant and scientific adviser/shareholder of companies developing long-acting release products. This potential conflict of interest has been disclosed and is managed by the University of Michigan. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Tang, J., Lee, D. et al. Clinical translation of long-acting drug delivery formulations. Nat Rev Mater 7, 406–420 (2022). https://doi.org/10.1038/s41578-021-00405-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00405-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research