Skip to main content

Advertisement

Log in

The effects of inter-annual fluctuations in precipitation, lake surface area, and wind speed on phytoplankton structure in three shallow Mediterranean lakes (Sakarya, Turkey)

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Phytoplankton biomass, diversity, functional groups (FGs), and environmental parameters in three shallow lakes were evaluated to show the inter-annual fluctuations in precipitation, lake surface area, and wind speed which might affect the community structure and distribution of phytoplankton. Three lakes (Taşkısığı, Little Akgöl, and Poyrazlar) in Sakarya province (Turkey) were sampled taking into account two periods (Period A and Period B). Monthly (PRE)–daily (dPRE) total precipitation, lake surface area, and monthly (WD)–daily (dWD) average wind speed values were obtained higher in Period B. Moreover, in Period B, probably due to increased runoff, high total phosphorus values were recorded which slightly triggers the increase in biomass. Besides, higher WD and dWD values have also caused biomass increase due to the reinforcement of nutrients to the water column from the sediment in this period. It is thought that the increase in the species richness and diversity values in Period B is related to the unstable environmental conditions as well as their relationship with water temperature, total phosphorus, orthophosphate, specific conductance, soluble silica, and pH. During the studied periods, 16 phytoplankton functional groups (FGs) were prominent in the total biomass; however, FGs F, N, X1, X2, Lo, and T were abundant during Period A, while Y, E, W1, and H1 were important components of phytoplankton during Period B. Light availability was low in both periods; therefore, FGs that prefer or are tolerant to low light conditions were dominant in the lakes. However, elevated light availability in some months of Period B has selected coda W1 and H1. Higher nutrient levels in Period B have also determined the distribution of the FGs, and FGs that prefer or are tolerant to high nutrient conditions were prominent in this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO et al (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  PubMed  PubMed Central  Google Scholar 

  • Allende L, Tell G, Zagarese H, Torremorell A, Pérez G, Bustingorry J, Escaray R, Izaguirre I (2008) Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624:45–60

    Article  CAS  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical Paper of the ıntergovernmental panel on climate change, IPCC Secretariat, Geneva

  • Becker V, Caputo L, Ordóñez J, Marcé J, Armengol J, Crossetti LO, Huszar VLM (2010) Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res 44:3345–3354

    Article  CAS  PubMed  Google Scholar 

  • Beklioglu M, Tan CO (2008) Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought. Fund Appl Limnol 171:105–118

    Article  CAS  Google Scholar 

  • Beklioglu M, Romo S, Kagalou I, Quintana X, Bécares E (2007) State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584:317–326

    Article  Google Scholar 

  • Bode A, Fernández E (1992) Influence of water-column stability on phytoplankton size and biomass succession patterns in the central Cantabrian Sea (Bay of Biscay). J Plankton Res 14:885–902

    Article  Google Scholar 

  • Bouvy M, Falcão D, Marinho M, Pagano M, Moura A (2000) Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquat Microb Ecol 23:13–27

    Article  Google Scholar 

  • Bovo-Scomparin VM, Train S (2008) Long-term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia 610:331–344

    Article  Google Scholar 

  • Braga GG, Becker V (2020) Influence of water volume reduction on the phytoplankton dynamics in a semi-arid man-made lake: a comparison of two morphofunctional approaches. An Acad Bras Cienc. https://doi.org/10.1590/0001-3765202020181102

    Article  PubMed  Google Scholar 

  • Brasil J, Attayde JL, Vasconcelos FR, Dantas DD, Huszar VL (2016) Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770:145–164

    Article  CAS  Google Scholar 

  • Brierley B, Carvalho L, Davies S, Krokowski J (2007) Guidance on the quantitative analysis of phytoplankton in freshwater samples. Report to SNIFFER (Project WFD80), Edinburgh

  • Burkholder JM, Glibert PM, Skelton HM (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93

    Article  CAS  Google Scholar 

  • Cao HS, Kong FX, Luo LC, Sh XL, Yang Z et al (2006) Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu. J Freshwater Ecol 21:231–238

    Article  Google Scholar 

  • Cardoso LS, Marques DM (2009) Hydrodynamics-driven plankton community in a shallow lake. Aquat Ecol 43:73–84

    Article  Google Scholar 

  • Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods. North American Lake management society, pp 96

  • Carvajal-Chitty HI (1993) Some notes about the intermediate disturbance hypothesis and its effects on the phytoplankton of the middle Orinoco river. Hydrobiologia 249:117–124

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (ed) Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the ıntergovernmental panel on climate change, Cambridge University Press, Cambridge, U.K., pp 847–940

  • Coats R, Sahoo G, Riverson J, Costa-Cabral M, Dettinger M et al (2012) Historic and likely future ımpacts of climate change on Lake Tahoe, California-Nevada, USA. In: Goldman CR, Kumagai M, Robarts RD (ed) Climatic change and global warming of ınland waters. Wiley, pp 231–254. https://doi.org/10.1002/9781118470596.ch14/summary

  • Cole GA (1994) Textbook of LIMNOLOGY. Waveland Press Inc., Illinois

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuations in shallow lake ecosystems–workshop conclusions. Hydrobiologia 506:23–27

    Article  Google Scholar 

  • Crossetti LO, Becker V, Cardoso LS, Rodrigues LR, Costa LS, Motta-Marques D (2013) Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica - Ecol Manag Inland Waters 43:157–163

    Article  Google Scholar 

  • Dantas ÊW, Moura AN, Bittencourt-Oliveira MDC (2011) Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. An Acad Bras Cienc 83:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Qin B, Sarvala J, Salmaso N, Zhu G et al (2016) Phytoplankton assemblages respond differently to climate warming and eutrophication: a case study from Pyhäjärvi and Taihu. J Great Lakes Res 42:386–396

    Article  CAS  Google Scholar 

  • Deng J, Paerl HW, Qin B, Zhang Y, Zhu G et al (2018) Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Sci Total Environ 645:1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Descy JP (1993) Ecology of the phytoplankton of the River Moselle: effects of disturbances on community structure and diversity. Hydrobiologia 249:111–116

    Article  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Figueredo CC, Giani A (2001) Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia 445:165–174

    Article  Google Scholar 

  • GDM, The General Directorate of Meteorology (2017) Air temperature, precipitation and wind speed values of Sakarya city during 2011–2016. https://www.mgm.gov.tr/

  • George DG, Maberly SC, Hewitt DP (2004) The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshwater Biol 49:760–774

    Article  Google Scholar 

  • Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45:1058–1066

    Article  Google Scholar 

  • Gerten D, Adrian R (2001) Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol Oceanogr 46:448–455

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett. https://doi.org/10.1029/2006GL025734

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed 20.02.2021

  • Hamilton DP, Mitchell SF (1996) An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317:209–220

    Article  Google Scholar 

  • Huang C, Zhang Y, Huang T, Yang H, Li Y et al (2019) Long-term variation of phytoplankton biomass and physiology in Taihu lake as observed via MODIS satellite. Water Res 153:187–199

    Article  CAS  PubMed  Google Scholar 

  • Huber-Pestalozzi G (1941) Das phytoplankton des Süßwassers: chrysophyceen, farblose flagellaten heterokonten. Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1950) Das Phytoplankton des Süßwassers: cryoptophyceen, chloromonadien, peridineen. Schweizerbart, Stuttgart

  • Huber-Pestalozzi G (1961) Das phytoplankton des süßwassers: chlorophyceae, ordnung: volvocales. Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1962) Das Phytoplankton des Süßwassers. Systematik und biologie: blaualgen. Schweizerbart, Stuttgart

  • Huber-Pestalozzi G (1969) Das phytoplankton des SÜßWASSERS SYSTEMATIK UND BIOLOGIE: EUGLENOPHYceen. Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1972) Das Phytoplankton des Süßwassers. systematik und biologie: chlorophyceae (Grünalgen). Ordnung: tetrasporales. Schweizerbart, Stuttgart

  • Huber-Pestalozzi G (1975) Das Phytoplankton des Süßwassers. Systematik und biologie: diatomeen. Schweizerbart, Stuttgart

  • Huber-Pestalozzi G (1982) Das phytoplankton des Süßwassers. systematik und biologie: conjugatophyceae (Desmidiales und Zygnematales) (excl. Zygnemataceae). Schweizerbart, Stuttgart

  • Huber-Pestalozzi G (1983) Das Phytoplankton des Süßwassers. Systematik und biologie: chlorophyceae (Grünalgen) ordnung: chlorococcales. Schweizerbart, Stuttgart

  • Huszar VLDM, Reynolds CS (1997) Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brasil): responses to gradual environmental change. Hydrobiologia 346:169–181

    Article  Google Scholar 

  • Jensen P, Jeppesen E, Olrik K, Kristensen P (1994) Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51:1692–1699

    Article  Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM et al (2009) Climate change effects on runoff, phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen E, Kronvang B, Olesen JE, Audet J, Søndergaard M et al (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663:1–21

    Article  CAS  Google Scholar 

  • Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Søndergaard M et al (2014) Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol 73:88–111. https://doi.org/10.4081/jlimnol.2014.844

    Article  Google Scholar 

  • Jeppesen E, Brucet S, Naselli-Flores L, Papastergiadou E, Stefanidis K et al (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750:201–227

    Article  Google Scholar 

  • John DM, Whitton BA, Brook AJ (2003) The Freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Kamjunke N, Henrichs T, Gaedke U (2007) Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication. J Plankton Res 29:39–46

    Article  CAS  Google Scholar 

  • Kingston MB (1999) Effect of light on vertical migration and photosynthesis of Euglena proxima (Euglenophyta). J Phycol 35:245–253

    Article  Google Scholar 

  • Komarek J, Anagnostidis K (2008) Cyanoprokaryota: oscillatoriales. Spektrum Akademischer Verlag, Heidelberg, Süßwasserflora von Mitteleuropa

    Google Scholar 

  • Kozak A, Budzyńska A, Dondajewska-Pielka R, Kowalczewska-Madura K, Gołdyn R (2020) Functional groups of phytoplankton and their relationship with environmental factors in the restored Uzarzewskie lake. Water 12:313. https://doi.org/10.3390/w12020313

    Article  CAS  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986) Süßwasserflora von mitteleuropa: bacillariophyceae. Gustav Fischer Verlag, Stuttgart, I. Naviculaceae

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Süßwasserflora von mitteleuropa: bacillariophyceae. Centrales, Fragilariaceae, Eunoticeae. Gustav Fischer Verlag, Stuttgart, III

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Süßwasserflora von mitteleuropa: bacillariophyceae. IV. achnanthaceae, kritische ergänzungen zu navicula (Lineolatae) und gomphonema. Gesamtliteraturverzeichnis. Gustav Fischer Verlag, Stuttgart

  • Krammer K, Lange-Bertalot H (1999) Süßwasserflora von mitteleuropa: bacillariophyceae. Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Stuttgart, II

    Google Scholar 

  • Krammer K (2003) Diatoms of Europe. Volume 4: cymbopleura, delicata, navicymbula, gomphocymbellopsis, afrocymbella. A.R.G. Gantner Verlag, Ruggell

  • Kuha J, Arvola L, Hanson PC, Huotari J, Huttula T et al (2016) Response of boreal lakes to episodic weather-induced events. Inland Waters 6:523–534. https://doi.org/10.5268/IW-6.4.886

    Article  CAS  Google Scholar 

  • Lindenschmidt KE, Chorus I (1998) The effect of water column mixing on phytoplankton succession, diversity and similarity. J Plankton Res 20:1927–1951. https://doi.org/10.1093/plankt/20.10.1927

    Article  Google Scholar 

  • Longhi ML, Beisner BE (2010) Patterns in taxonomic and functional diversity of lake phytoplankton. Freshwater Biol 55:1349–1366

    Article  CAS  Google Scholar 

  • McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432

    Article  Google Scholar 

  • McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG et al (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416:182–205

    Article  Google Scholar 

  • Milius A, Laugaste R, Möls T, Haldna M, Kangur K (2005) Water level and water temperature as factors determining phytoplankton biomass and nutrient content in Lake Peipsi. Proc Estonian Acad Sci Biol Ecol 54:5–17

    Article  Google Scholar 

  • Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E (2011) Allied attack: climate change and eutrophication. Inland Waters 1:101–105

    Article  Google Scholar 

  • Naselli-Flores L (2003) Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506:13–21

    Article  Google Scholar 

  • Naselli-Flores L, Barone R, Chorus I, Kurmayer R (2007) Toxic cyanobacterial blooms in reservoirs under a semiarid Mediterranean climate: the magnification of a problem. Environ Toxicol 22:399–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naselli-Flores L, Barone R (2012) Phytoplankton dynamics in permanent and temporary Mediterranean waters: Is the game hard to play because of hydrological disturbance? Hydrobiologia 698:147–159. https://doi.org/10.1007/s10750-012-1059-3

    Article  CAS  Google Scholar 

  • Nõges T (2009) Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633:33–43. https://doi.org/10.1007/s10750-009-9874-x

    Article  CAS  Google Scholar 

  • Nõges T, Nõges P (1999) The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 143:277–283

    Article  Google Scholar 

  • Nõges T, Nõges P, Laugaste R (2003) Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506:257–263

    Article  Google Scholar 

  • Nõges P, Nõges T, Ghiani M, Sena F, Fresner R, Friedl M, Mildner J (2011) Increased nutrient loading and rapid changes in phytoplankton expected with climate change in stratified South European lakes: sensitivity of lakes with different trophic state and catchment properties. Hydrobiologia 667:255–270

    Article  CAS  Google Scholar 

  • Özen A, Karapınar B, Kucuk I, Jeppesen E, Beklioglu M (2010) Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia 646:61–72

    Article  CAS  Google Scholar 

  • Padisák J, Borics G, Fehér G, Grigorszky I, Oldal I, Schmidt A, Zámbóné-Doma Z (2003) Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502:157–168

    Article  Google Scholar 

  • Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621:1–19. https://doi.org/10.1007/s10750-008-9645-0

    Article  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Env Microbiol Rep 1:27–37

    Article  CAS  Google Scholar 

  • Paidere J, Gruberts D, Skute A, Druvietis I (2007) Impact of two different flood pulses on planktonic communities of the largest floodplain lakes of the Daugava River (Latvia). Hydrobiologia 592:303–314

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Perkins DM, McKie BG, Malmqvist B, Gilmour SG, Reiss J, Woodward G (2010) Environmental warming and biodiversity ecosystem functioning in freshwater microcosms: partitioning the effects of species identity, richness and metabolism. Adv Ecol Res 43:177–209

    Article  Google Scholar 

  • Pollingher U (1988) Freshwater armored dinoflagellates: growth, reproduction strategies, and population dynamics. In: Sandgren C (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge Press, Cambridge, pp 134–174

    Google Scholar 

  • Posch T, Köster O, Salcher MM, Pernthaler J (2012) Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat Clim Change 2:809

    Article  CAS  Google Scholar 

  • Qiu X, Huang T, Zeng M (2016) Differences in phytoplankton dynamics and community structure between a wet year and dry year in the Zhoucun Reservoir. J Freshwater Ecol 31:377–391

    Article  CAS  Google Scholar 

  • Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf/Luhe

  • Reynolds CS, Descy JP (1996) The production, biomass and structure of phytoplankton in large rivers. Arch Hydrobiol Suppl 113:161–187

    Google Scholar 

  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428. https://doi.org/10.1093/plankt/24.5.417

    Article  Google Scholar 

  • Rodrigues LC, Pivato BM, Vieira LCG, Bovo-Scomparin VM, Bortolini JC, Pineda A, Train S (2018) Use of phytoplankton functional groups as a model of spatial and temporal patterns in reservoirs: a case study in a reservoir of central Brazil. Hydrobiologia 805:147–161

    Article  Google Scholar 

  • Romo S, Soria J, Fernández F, Ouahid Y, Barón-Soláá A (2013) Water residence time and the dynamics of toxic cyanobacteria. Freshwater Biol 58:513–522

    Article  CAS  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: morphology and biology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Ruiz J, Macias D, Peters F (2004) Turbulence increases the average settling velocity of phytoplankton cells. Proc Natl Acad Sci USA 101:17720–17724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmaso N, Padisák J (2007) Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578:97–112. https://doi.org/10.1007/s10750-006-0437-0

    Article  Google Scholar 

  • Schindler DW, Vallentyne JR (2008) The algal bowl: overfertilization of the world’s freshwaters and estuaries. University of Alberta Press, Edmonton

    Google Scholar 

  • Segura AM, Kruk C, Calliari D, Forth H (2013) Use of a morphology-based functional approach to model phytoplankton community succession in a shallow subtropical lake. Freshwater Biol 58:504–512

    Article  Google Scholar 

  • Sevindik TO, Altundal E, Kucuk F (2015) The seasonal and spatial distribution of the phytoplankton of a Mesotrophic Lake related to certain physical and chemical parameters. Ekoloji 24:14–23

    Article  CAS  Google Scholar 

  • Sevindik TO, Çelik K, Naselli-Flores L (2017a) Spatial heterogeneity and seasonal succession of phytoplankton functional groups along the vertical gradient in a mesotrophic reservoir. Ann Limnol-Int J Lim 53:129–141. https://doi.org/10.1051/limn/2016040

    Article  Google Scholar 

  • Sevindik TO, Tunca H, Gönülol A, Gürsoy N, Küçükkaya ŞN, Kınalı Z (2017b) Phytoplankton dynamics and structure, and ecological status estimation by the Q assemblage index: a comparative analysis in two shallow Mediterranean lakes. Turk J Bot 41:25–36. https://doi.org/10.3906/bot-1510-22

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shi K, Zhang Y, Zhang Y, Li N, Qin B et al (2019) Phenology of phytoplankton blooms in a trophic lake observed from long-term MODIS data. Environ Sci Technol 53:2324–2331

    Article  CAS  PubMed  Google Scholar 

  • Sims PA (1996) An atlas of Britih diatoms. Biopress Ltd., London

    Google Scholar 

  • Sommer U, Padisák J, Reynolds CS, Juhász-Nagy P (1993) Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249:1–7

    Article  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506:135–145

    Article  Google Scholar 

  • Spijkerman E, Garcia-Mendoza E, Matthijs HCP, Van Hunnik E, Coesel PF (2004) Negative effects of P-buffering and pH on photosynthetic activity of planktonic desmid species. Photosynthetica 42:49–57. https://doi.org/10.1023/B:PHOT.0000040569.17719.2a

    Article  CAS  Google Scholar 

  • Spijkerman E, Maberly SC, Coesel PF (2005) Carbon acquisition mechanisms by planktonic desmids and their link to ecological distribution. Can J Botany 83:850–858. https://doi.org/10.1139/b05-069

    Article  CAS  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook ofseawater analysis, 2nd edn. Bull. Fish. Res. Bd Can.

  • Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346. https://doi.org/10.1093/plankt/fbg096

    Article  Google Scholar 

  • Tardio M, Tolotti M, Novarino G, Cantonati M (2003) Ecological and taxonomic observations on the flagellate algae characterising four years of enclosure experiments in Lake Tovel (Southern Alps). In: Naselli-Flores L, Padisák J, Dokulil MT (eds) Phytoplankton and equilibrium concept: the ecology of steady-state assemblages. Springer, Dordrecht, pp 285–296

    Chapter  Google Scholar 

  • Technicon Industrial Methods (1977a) Nitrate and nitrite in water and wastewater. No. 158–71, W/A., U.K.

  • Technicon Industrial Methods (1977b) Phosphate and silicate analysis in water and seawater. No. 253–280 E. Application note, U.K.

  • Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA

  • Thackeray SJ, Sparks TM, Frederiken M, Burthes S, Bacon PJ et al (2010) Trophic level asynchrony in rates of phonological change for marine, freshwater and terrestrial environments. Global Change Biol 16:3304–3313

    Article  Google Scholar 

  • Tian C, Pei H, Hu W, Hao D, Doblin MA et al (2015) Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China. Environ Sci Pollut Res 22:18163–18175

    Article  CAS  Google Scholar 

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13:349–372

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A et al (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (ed) Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the ıntergovernmental panel on climate. Change Cambridge University Press, Cambridge, pp 235–336

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Der Internationalen Vereinigung Der Theoretischen Und Angewandten Limnologie 5:567–596

    Google Scholar 

  • Vincent WF, Laurion I, Pienitz R, Walter Anthony KM (2012) Climate ımpacts on Arctic lake ecosystems. In: Goldman CR, Kumagai M, Robarts RD (ed) Climatic change and global warming of ınland waters. Wiley, pp 27–42. https://doi.org/10.1002/9781118470596.ch2/summary.

  • Wang H, Zhang ZZ, Liang DF, Du HB, Pang Y et al (2016) Separation of wind’s influence on harmful cyanobacterial blooms. Water Res 98:280–292

    Article  CAS  PubMed  Google Scholar 

  • Wetzel RG, Likens G (2000) Limnological analysis. Springer, New York

    Book  Google Scholar 

  • Woolway RI, Dokulil MT, Marszelewski W, Schmid M, Bouffard D, Merchant CJ (2017) Warming of Central European lakes and their response to the 1980s climate regime shift. Clim Change 142:505–520. https://doi.org/10.1007/s10584-017-1966-4

    Article  Google Scholar 

  • Woolway RI, Merchant CJ (2019) Worldwide alteration of lake mixing regimes in response to climate change. Nat Geosci 12:271–276

    Article  CAS  Google Scholar 

  • Wu X, Kong F, Chen Y, Qian X, Zhang L et al (2010) Horizontal distribution and transport processes of bloom-forming Microcystis in a large shallow lake (Taihu, China). Limnologica 40:8–15

    Article  CAS  Google Scholar 

  • Xu HQ (2006) Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27:3025–3033

    Article  Google Scholar 

  • Zhang M, Shi X, Yang Z, Yu Y, Shi L et al (2018) Long-term dynamics and drivers of phytoplankton biomass in eutrophic Lake Taihu. Sci Total Environ 645:876–886

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Qin B, Casenave C, Han X, Yang G et al (2015) Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu. Environ Sci Pollut Res 22:12737–12746

    Article  CAS  Google Scholar 

  • Zhou Q, Zhang Y, Lin D, Shan K, Luo Y et al (2016) The relationships of meteorological factors and nutrient levels with phytoplankton biomass in a shallow eutrophic lake dominated by cyanobacteria, Lake Dianchi from 1991 to 2013. Environ Sci Pollut Res 23:15616–15626

    Article  CAS  Google Scholar 

  • Zhu J, Jiang L, Zhang Y (2016) Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands. Sci Rep 6:1–8

    CAS  Google Scholar 

  • Zohary T, Nishri A, Sukenik A (2012) Present–absent: a chronicle of the dinoflagellate Peridinium gatunense from Lake Kinneret. In: Salmoso N, Naselli-Flores L, Cerasino L, Flaim G, Tolotti M, Padisák J (eds) Phytoplankton responses to human impacts at different scales. Springer, Dordrecht, pp 161–174

    Chapter  Google Scholar 

  • Zohary T, Yacobi YZ, Alster A, Fishbein T, Lippman S, Tibor G (2014) Phyto-plankton. In: Zohary T, Sukenik A, Berman T, Nishri A (eds) Lake Kinneret: ecology and management. Springer, Heidelberg, pp 161–190

    Chapter  Google Scholar 

Download references

Acknowledgements

The support for this research from Sakarya University Research Foundation (2014-L02-20-001) is gratefully acknowledged. The authors also would like to thank to Şeyma Nur KÜÇÜKKAYA, Zuhal DURGUT KINALI, and Nisa YILDIRIM GÜRSOY for their help in the field sampling during the first period.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

TOS designed the experiments, analyzed the data, and wrote the text. ME and HT conducted the field sampling. UG and HT made chemical analyses of water samples. TOS identified and counted the phytoplankton. MKE determined the surface area of lakes using satellite images.

Corresponding author

Correspondence to Tuğba Ongun Sevindik.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Man Xiao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ongun Sevindik, T., Erdoğan, M., Tunca, H. et al. The effects of inter-annual fluctuations in precipitation, lake surface area, and wind speed on phytoplankton structure in three shallow Mediterranean lakes (Sakarya, Turkey). Aquat Ecol 56, 697–718 (2022). https://doi.org/10.1007/s10452-021-09929-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09929-3

Keywords

Navigation