Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond

This article has been updated

Abstract

Mechanically interlocked molecules, such as rotaxanes and catenanes, are receiving increased attention as scaffolds for the development of new catalysts, driven by both their increasing accessibility and high-profile examples of the mechanical bond delivering desirable behaviours and properties. In this Review, we survey recent advances in the catalytic applications of mechanically interlocked molecules organized by the effect of the mechanical bond on key catalytic properties, namely, activity, chemoselectivity and stereoselectivity, and focus on how the mechanically bonded structure leads to the observed behaviour. Our aim is to inspire future investigations of mechanically interlocked catalysts, including those outside of the supramolecular community.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of selected events in the development of MIMs for catalysis.
Fig. 2: Enhanced catalytic activity due to the mechanical bond.
Fig. 3: The mechanical bond and stimuli-regulated catalysis.
Fig. 4: Chemoselectivity and the mechanical bond.
Fig. 5: Enhancing stereoselectivity through the sterically crowded environment of the mechanical bond.
Fig. 6: Enhancing stereoselectivity with multifunctional interlocked scaffolds.
Fig. 7: Catalysts with chiral reaction environments created by the mechanical bond.
Fig. 8: Examples of catalysis and molecular motion.

Similar content being viewed by others

Change history

  • 28 January 2022

    Some bonds shown in a structure in figure 7c were misaligned. This has now been corrected in all versions of the article.

References

  1. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: from Molecules to Machines (Wiley, 2016).

  2. Wasserman, E. The preparation of interlocking rings: a catenane. J. Am. Chem. Soc. 82, 4433–4434 (1960).

    Article  CAS  Google Scholar 

  3. Harrison, I. T. & Harrison, S. Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 89, 5723–5724 (1967).

    Article  CAS  Google Scholar 

  4. Beves, J. E., Blight, B. A., Campbell, C. J., Leigh, D. A. & McBurney, R. T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 50, 9260–9327 (2011).

    Article  CAS  Google Scholar 

  5. Denis, M. & Goldup, S. M. The active template approach to interlocked molecules. Nat. Rev. Chem. 1, 0061 (2017).

    Article  CAS  Google Scholar 

  6. Stoddart, J. F. Dawning of the age of molecular nanotopology. Nano Lett. 20, 5597–5600 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Sauvage, J. P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article  CAS  Google Scholar 

  8. Stoddart, J. F. Mechanically interlocked molecules (MIMs) — molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  9. Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

    Article  CAS  Google Scholar 

  10. van Dijk, L. et al. Molecular machines for catalysis. Nat. Rev. Chem. 2, 0117 (2018).

    Article  Google Scholar 

  11. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bąk, K. M., Porfyrakis, K., Davis, J. J. & Beer, P. D. Exploiting the mechanical bond for molecular recognition and sensing of charged species. Mater. Chem. Front. 4, 1052–1073 (2020).

    Article  Google Scholar 

  13. Pairault, N. et al. Rotaxane-based architectures for biological applications. C. R. Chim. 19, 103–112 (2016).

    Article  CAS  Google Scholar 

  14. Mayumi, K., Ito, K. & Kato, K. Polyrotaxane and Slide-Ring Materials (Royal Society of Chemistry, 2016).

  15. Takata, T. Switchable polymer materials controlled by rotaxane macromolecular switches. ACS Cent. Sci. 6, 129–143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoyas Perez, N. & Lewis, J. E. M. Synthetic strategies towards mechanically interlocked oligomers and polymers. Org. Biomol. Chem. 18, 6757–6780 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Frampton, M. J. & Anderson, H. L. Insulated molecular wires. Angew. Chem. Int. Ed. 46, 1028–1064 (2007).

    Article  CAS  Google Scholar 

  18. Leigh, D. A., Marcos, V. & Wilson, M. R. Rotaxane catalysts. ACS Catal. 4, 4490–4497 (2014).

    Article  CAS  Google Scholar 

  19. Martinez-Cuezva, A., Saura-Sanmartin, A., Alajarin, M. & Berna, J. Mechanically interlocked catalysts for asymmetric synthesis. ACS Catal. 10, 7719–7733 (2020).

    Article  CAS  Google Scholar 

  20. Kauerhof, D. & Niemeyer, J. Functionalized macrocycles in supramolecular organocatalysis. ChemPlusChem 85, 889–899 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Kwamen, C. & Niemeyer, J. Functional rotaxanes in catalysis. Chem. Eur. J. 27, 175–186 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chirality in rotaxanes and catenanes. Chem. Soc. Rev. 47, 5266–5311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olivo, G., Capocasa, G., Del Giudice, D., Lanzalunga, O. & Di Stefano, S. New horizons for catalysis disclosed by supramolecular chemistry. Chem. Soc. Rev. 50, 7681–7724 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Heard, A. W. & Goldup, S. M. Simplicity in the design, operation, and applications of mechanically interlocked molecular machines. ACS Cent. Sci. 6, 117–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Albrecht-Gary, A. M., Saad, Z., Dietrich-Buchecker, C. O. & Sauvage, J. P. Interlocked macrocyclic ligands: a kinetic catenand effect in copper(I) complexes. J. Am. Chem. Soc. 107, 3205–3209 (1985).

    Article  CAS  Google Scholar 

  26. Winn, J., Pinczewska, A. & Goldup, S. M. Synthesis of a rotaxane Cu(I) triazolide under aqueous conditions. J. Am. Chem. Soc. 135, 13318–13321 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Caputo, C. B., Zhu, K., Vukotic, V. N., Loeb, S. J. & Stephan, D. W. Heterolytic activation of H2 using a mechanically interlocked molecule as a frustrated Lewis base. Angew. Chem. Int. Ed. 52, 960–963 (2013).

    Article  CAS  Google Scholar 

  28. Barat, R. et al. A mechanically interlocked molecular system programmed for the delivery of an anticancer drug. Chem. Sci. 6, 2608–2613 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acevedo-Jake, A. et al. AT-CuAAC synthesis of mechanically interlocked oligonucleotides. J. Am. Chem. Soc. 142, 5985–5990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hudson, B. & Vinograd, J. Catenated circular DNA molecules in HeLa cell mitochondria. Nature 216, 647–652 (1967).

    Article  CAS  PubMed  Google Scholar 

  31. Hegemann, J. D., Zimmermann, M., Xie, X. & Marahiel, M. A. Lasso peptides: an intriguing class of bacterial natural products. Acc. Chem. Res. 48, 1909–1919 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Hoekman, S., Kitching, M. O., Leigh, D. A., Papmeyer, M. & Roke, D. Goldberg active template synthesis of a [2]rotaxane ligand for asymmetric transition-metal catalysis. J. Am. Chem. Soc. 137, 7656–7659 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, Y. J. et al. Na+ ions induce the pirouetting motion and catalytic activity of [2]rotaxanes. Chem. Eur. J. 23, 9756–9760 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Hamza, A., Schubert, G., Soos, T. & Papai, I. Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C–C bond formation. J. Am. Chem. Soc. 128, 13151–13160 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, J. L., Zhang, Y., Liu, C., Zheng, A. M. & Wang, W. Insights into the dual activation mechanism involving bifunctional cinchona alkaloid thiourea organocatalysts: an NMR and DFT study. J. Org. Chem. 77, 9813–9825 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Lim, J. Y. C., Yuntawattana, N., Beer, P. D. & Williams, C. K. Isoselective lactide ring opening polymerisation using [2]rotaxane catalysts. Angew. Chem. Int. Ed. 58, 6007–6011 (2019).

    Article  CAS  Google Scholar 

  37. Dove, A. P., Pratt, R. C., Lohmeijer, B. G., Waymouth, R. M. & Hedrick, J. L. Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization. J. Am. Chem. Soc. 127, 13798–13799 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kihara, N., Tachibana, Y., Kawasaki, H. & Takata, T. Unusually lowered acidity of ammonium group surrounded by crown ether in a rotaxane system and its acylative neutralization. Chem. Lett. 29, 506–507 (2000).

    Article  Google Scholar 

  39. Ragazzon, G. et al. Remote electrochemical modulation of pKa in a rotaxane by co-conformational allostery. Proc. Natl Acad. Sci. USA 115, 9385–9390 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Pairault, N. et al. Heterobifunctional rotaxanes for asymmetric catalysis. Angew. Chem. Int. Ed. 59, 5102–5107 (2020).

    Article  CAS  Google Scholar 

  41. Perez, Jd. M. et al. Mechanical bonding activation in rotaxane-based organocatalysts. Org. Chem. Front. 8, 4202–4210 (2021).

    Article  CAS  Google Scholar 

  42. Fang, Y. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 48, 4707–4730 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Marcos, V. et al. Allosteric initiation and regulation of catalysis with a molecular knot. Science 352, 1555–1559 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Prakasam, T. et al. Metal-organic self-assembled trefoil knots for C-Br bond activation. ACS Catal. 9, 1907–1914 (2019).

    Article  CAS  Google Scholar 

  45. Kassem, S. et al. Stereodivergent synthesis with a programmable molecular machine. Nature 549, 374–378 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Blanco, V., Carlone, A., Hanni, K. D., Leigh, D. A. & Lewandowski, B. A rotaxane-based switchable organocatalyst. Angew. Chem. Int. Ed. 51, 5166–5169 (2012).

    Article  CAS  Google Scholar 

  47. Blanco, V., Leigh, D. A., Marcos, V., Morales-Serna, J. A. & Nussbaumer, A. L. A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine. J. Am. Chem. Soc. 136, 4905–4908 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Blanco, V., Leigh, D. A., Lewandowska, U., Lewandowski, B. & Marcos, V. Exploring the activation modes of a rotaxane-based switchable organocatalyst. J. Am. Chem. Soc. 136, 15775–15780 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Biagini, C. et al. Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019).

    Article  CAS  Google Scholar 

  50. Jaramillo, P., Pérez, P. & Fuentealba, P. Relationship between basicity and nucleophilicity. J. Phys. Org. Chem. 20, 1050–1057 (2007).

    Article  CAS  Google Scholar 

  51. Martinez-Cuezva, A. et al. Photoswitchable interlocked thiodiglycolamide as a cocatalyst of a chalcogeno-Baylis–Hillman reaction. Chem. Sci. 8, 3775–3780 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Teator, A. J., Lastovickova, D. N. & Bielawski, C. W. Switchable polymerization catalysts. Chem. Rev. 116, 1969–1992 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Deacy, A. C., Gregory, G. L., Sulley, G. S., Chen, T. T. D. & Williams, C. K. Sequence control from mixtures: switchable polymerization catalysis and future materials applications. J. Am. Chem. Soc. 143, 10021–10040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suzaki, Y. et al. [3]Rotaxane-based dinuclear palladium catalysts for ring-closure Mizoroki–Heck reaction. Org. Lett. 13, 3774–3777 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Hsueh, F. C. et al. N-heterocyclic carbene copper(I) rotaxanes mediate sequential click ligations with all reagents premixed. Angew. Chem. Int. Ed. 59, 11278–11282 (2020).

    Article  CAS  Google Scholar 

  57. Beswick, J. et al. Selecting reactions and reactants using a switchable rotaxane organocatalyst with two different active sites. Chem. Sci. 6, 140–143 (2015). An impressive demonstration of using a switchable catalyst based on a mechanically interlocked molecule molecular shuttle to control multiple chemical reactions.

    Article  CAS  PubMed  Google Scholar 

  58. Eichstaedt, K. et al. Switching between anion-binding catalysis and aminocatalysis with a rotaxane dual-function catalyst. J. Am. Chem. Soc. 139, 9376–9381 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Martinez-Cuezva, A., Lopez-Leonardo, C., Bautista, D., Alajarin, M. & Berna, J. Stereocontrolled synthesis of beta-lactams within [2]rotaxanes: showcasing the chemical consequences of the mechanical bond. J. Am. Chem. Soc. 138, 8726–8729 (2016). An example of an organocatalysed reaction in the framework of a rotaxane whose outcome is dictated by the mechanical bond.

    Article  CAS  PubMed  Google Scholar 

  60. Modicom, F., Jamieson, E. M. G., Rochette, E. & Goldup, S. M. Chemical consequences of the mechanical bond: a tandem active template-rearrangement reaction. Angew. Chem. Int. Ed. 58, 3875–3879 (2019).

    Article  CAS  Google Scholar 

  61. Leforestier, B., Gyton, M. R. & Chaplin, A. B. Oxidative addition of a mechanically entrapped C(sp)–C(sp) bond to a rhodium(I) pincer complex. Angew. Chem. Int. Ed. 59, 23500–23504 (2020). An exciting demonstration of the ability of the mechanical bond to generate unique reactivity, a principle that could provide breakthroughs in mechanically interlocked molecule catalysis.

    Article  CAS  Google Scholar 

  62. Zhu, L., Li, J., Yang, J. & Au-Yeung, H. Y. Cross dehydrogenative C–O coupling catalysed by a catenane-coordinated copper(I). Chem. Sci. 11, 13008–13014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tachibana, Y., Kihara, N. & Takata, T. Asymmetric benzoin condensation catalyzed by chiral rotaxanes tethering a thiazolium salt moiety via the cooperation of the component: can rotaxane be an effective reaction field? J. Am. Chem. Soc. 126, 3438–3439 (2004). The first example of enantioselective catalysis with a chiral mechanically interlocked molecule in which the principle of chiral information transfer between the components is clearly demonstrated.

    Article  CAS  PubMed  Google Scholar 

  64. Johansson, M. J., Gorin, D. J., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed stereoselective olefin cyclopropanation. J. Am. Chem. Soc. 127, 18002–18003 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Galli, M., Lewis, J. E. & Goldup, S. M. A stimuli-responsive rotaxane–gold catalyst: regulation of activity and diastereoselectivity. Angew. Chem. Int. Ed. 54, 13545–13549 (2015).

    Article  CAS  Google Scholar 

  66. Poater, A. et al. SambVca: a web application for the calculation of the buried volume of N-heterocyclic carbene ligands. Eur. J. Inorg. Chem. 2009, 1759–1766 (2009).

    Article  Google Scholar 

  67. Calles, M. et al. Enhancing the selectivity of prolinamide organocatalysts using the mechanical bond in [2]rotaxanes. Chem. Sci. 11, 3629–3635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dommaschk, M., Echavarren, J., Leigh, D. A., Marcos, V. & Singleton, T. A. Dynamic control of chiral space through local symmetry breaking in a rotaxane organocatalyst. Angew. Chem. Int. Ed. 58, 14955–14958 (2019). A molecular shuttle in which the different mechanical states of the switch create pseudo-enantiomeric environments around a catalytic functional group.

    Article  CAS  Google Scholar 

  69. Ryabchun, A., Li, Q., Lancia, F., Aprahamian, I. & Katsonis, N. Shape-persistent actuators from hydrazone photoswitches. J. Am. Chem. Soc. 141, 1196–1200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shao, B. & Aprahamian, I. Hydrazones as new molecular tools. Chem 6, 2162–2173 (2020).

    Article  CAS  Google Scholar 

  71. Mitra, R., Zhu, H., Grimme, S. & Niemeyer, J. Functional mechanically interlocked molecules: asymmetric organocatalysis with a catenated bifunctional Brønsted acid. Angew. Chem. Int. Ed. 56, 11456–11459 (2017). The first example of enantioselective catalysis using a catenane, including a clear demonstration of the potential for the flexible environment of the mechanical bond to enhance selectivity by increasing the effective molarity of cooperating catalytic functional groups.

    Article  CAS  Google Scholar 

  72. Jansen, D. et al. What is the role of acid–acid interactions in asymmetric phosphoric acid organocatalysis? A detailed mechanistic study using interlocked and non-interlocked catalysts. Chem. Sci. 11, 4381–4390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kirby, A. J. in Advances in Physical Organic Chemistry (ed. Gold, V. & Bethell, D.) 183–278 (Academic, 1980).

  74. Di Stefano, S. & Mandolini, L. The canonical behavior of the entropic component of thermodynamic effective molarity. An attempt at unifying covalent and noncovalent cyclizations. Phys. Chem. Chem. Phys. 21, 955–987 (2019).

    Article  PubMed  Google Scholar 

  75. Martinez-Cuezva, A. et al. Interlocking the catalyst: thread versus rotaxane-mediated enantiodivergent Michael addition of ketones to beta-nitrostyrene. Org. Lett. 21, 5192–5196 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Xu, K., Nakazono, K. & Takata, T. Design of rotaxane catalyst for O-acylative asymmetric desymmetrization of meso-1,2-diol utilizing the cooperative effect of the components. Chem. Lett. 45, 1274–1276 (2016).

    Article  CAS  Google Scholar 

  77. Cakmak, Y., Erbas-Cakmak, S. & Leigh, D. A. Asymmetric catalysis with a mechanically point-chiral rotaxane. J. Am. Chem. Soc. 138, 1749–1751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Heard, A. W. & Goldup, S. M. Synthesis of a mechanically planar chiral rotaxane ligand for enantioselective catalysis. Chem 6, 994–1006 (2020). The first demonstration of enantioselective catalysis using a mechanical stereogenic unit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bordoli, R. J. & Goldup, S. M. An efficient approach to mechanically planar chiral rotaxanes. J. Am. Chem. Soc. 136, 4817–4820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jinks, M. A. et al. Stereoselective synthesis of mechanically planar chiral rotaxanes. Angew. Chem. Int. Ed. 57, 14806–14810 (2018).

    Article  CAS  Google Scholar 

  81. Wang, Y. M., Lackner, A. D. & Toste, F. D. Development of catalysts and ligands for enantioselective gold catalysis. Acc. Chem. Res. 47, 889–901 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Ishiwari, F., Nakazono, K., Koyama, Y. & Takata, T. Induction of single-handed helicity of polyacetylenes using mechanically chiral rotaxanes as chiral sources. Angew. Chem. Int. Ed. 56, 14858–14862 (2017).

    Article  CAS  Google Scholar 

  83. Denis, M., Lewis, J. E. M., Modicom, F. & Goldup, S. M. An auxiliary approach for the stereoselective synthesis of topologically chiral catenanes. Chem 5, 1512–1520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maynard, J. R. J. & Goldup, S. M. Strategies for the synthesis of enantiopure mechanically chiral molecules. Chem 6, 1914–1932 (2020).

    Article  CAS  Google Scholar 

  85. Hattori, G., Hori, T., Miyake, Y. & Nishibayashi, Y. Design and preparation of a chiral ligand based on a pseudorotaxane skeleton: application to rhodium-catalyzed enantioselective hydrogenation of enamides. J. Am. Chem. Soc. 129, 12930–12931 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Gil-Ramirez, G. et al. Tying a molecular overhand knot of single handedness and asymmetric catalysis with the corresponding pseudo-D3-symmetric trefoil knot. J. Am. Chem. Soc. 138, 13159–13162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Berna, J., Alajarin, M. & Orenes, R. A. Azodicarboxamides as template binding motifs for the building of hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 132, 10741–10747 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Agouridas, V. et al. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev. 119, 7328–7443 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. De, Bo,G. et al. An artificial molecular machine that builds an asymmetric catalyst. Nat. Nanotechnol. 13, 381–385 (2018). An impressive demonstration of the ability of mechanical motion to control the multistep synthesis of a functional biopolymer.

    Article  Google Scholar 

  91. McTernan, C. T., De, Bo,G. & Leigh, D. A. A track-based molecular synthesizer that builds a single-sequence oligomer through iterative carbon-carbon bond formation. Chem 6, 2964–2973 (2020).

    Article  CAS  Google Scholar 

  92. Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Chauvin, Y. Olefin metathesis: the early days (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3740–3747 (2006).

    Article  Google Scholar 

  96. Schrock, R. R. Multiple metal–carbon bonds for catalytic metathesis reactions (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3748–3759 (2006).

    Article  CAS  Google Scholar 

  97. Grubbs, R. H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3760–3765 (2006).

    Article  CAS  Google Scholar 

  98. Frisch, H. L. & Wasserman, E. Chemical topology. J. Am. Chem. Soc. 83, 3789–3795 (1961).

    Article  CAS  Google Scholar 

  99. Schill, G. & Lüttringhaus, A. The preparation of catena compounds by directed synthesis. Angew. Chem. Int. Ed. 3, 546–547 (1964).

    Article  Google Scholar 

  100. Dietrich-Buchecker, C. O. & Sauvage, J. P. Synthese de composes polyethers macrocycliques derives de la phenanthroline-1,10 diphenyl-2,9. Tetrahedron Lett. 24, 5091–5094 (1983).

    Article  CAS  Google Scholar 

  101. Yamamoto, C., Okamoto, Y., Schmidt, T., Jager, R. & Vogtle, F. Enantiomeric resolution of cycloenantiomeric rotaxane, topologically chiral catenane, and pretzel-shaped molecules: observation of pronounced circular dichroism. J. Am. Chem. Soc. 119, 10547–10548 (1997).

    Article  CAS  Google Scholar 

  102. Aucagne, V., Hanni, K. D., Leigh, D. A., Lusby, P. J. & Walker, D. B. Catalytic “click” rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc. 128, 2186–2187 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.W.H. thanks the University of Southampton for a Presidential Scholarship. J.M.S. thanks the Royal Society for a Newton International Fellowship. S.M.G. thanks the European Research Council (Consolidator Grant agreement 724987) for funding. S.M.G. is a Royal Society Wolfson Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and contributed to the writing of the article. S.M.G. finalized the article text. All authors reviewed and commented on the manuscript before submission.

Corresponding author

Correspondence to Stephen M. Goldup.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks S. Di Stefano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heard, A.W., Suárez, J.M. & Goldup, S.M. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat Rev Chem 6, 182–196 (2022). https://doi.org/10.1038/s41570-021-00348-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00348-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing