Skip to main content

Advertisement

Log in

Preliminary Evaluation of Natural Antibacterial Clays for Treating Wound Infections

  • Published:
Clays and Clay Minerals

Abstract

The overuse of antibiotics in medicine has led to concerns over management of wound infections where antibiotic-resistant bacteria are involved. Wound infections exhibit both acquired and biofilm-associated antibiotic resistance; innovative non-antibiotic therapeutic and preventive treatments are needed to limit emergence of conventional antimicrobial resistance and to address biofilm-associated resistance. Toward this goal, natural antibacterial clays have been identified that are effective at killing drug-resistant human pathogens in planktonic and biofilm states, in vitro. To move toward clinical testing of antibacterial clays, the present study was conducted to evaluate the topical application of a natural antibacterial clay to wounds in mice experimentally infected with methicillin-resistant Staphylococcus aureus (MRSA). Five preliminary animal trials were conducted to test various methods of applying hydrated antibacterial clay to infected wounds. None of the experiments yielded significantly reduced MRSA infection in vivo, compared to controls. Several hypotheses were tested to explore the diminished clay antibacterial activity in vivo including: (1) pH and Eh of mineral-bacterial suspensions may differ in wound fluids compared to growth media; (2) antibacterial reactants may complex with components of the wound; (3) hydrated clays may dry out in the wound; and (4) limited dissolved oxygen may reduce Fenton reactions. Ancillary in vitro tests were performed to explore these hypotheses. Results indicate that the clay application to wounds may require enhanced oxidation and possibly a longer treatment regimen. The experimental results foster understanding of the natural clay–bacterial interactions in wounds and may improve designs for medicinal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  • Behroozian, S., Svensson, S. L., Li, L. Y., & Davies, J. E. (2020). Broad-spectrum antimicrobial and antibiofilm activity of a natural clay mineral from British Columbia. Canada. mBio, 11, e02350–e02320. https://doi.org/10.1128/mBio.02350-20

    Article  Google Scholar 

  • Caflisch, K.M., Schmidt-Malan, S.M., Mandrekar, J.N., Karau, M.J., Nicklas, J.P., Williams, L.B., & Patel, R. (2018). Antibacterial activity of reduced iron clay against pathogenic bacteria from wound infections. International Journal of Antimicrobial Agents, 52, 692–696.

    Article  Google Scholar 

  • Cervini-Silva, J., Nieto-Camacho, A., Ramirez-Apan, M. T., Gomez-Vidales, V., Palacios, E., Montoya, A., & Ronquillo de Jesus, E. (2015). Anti-inflammatory, anti-bacterial and cytotoxic activity of fibrous clays. Colloids and Surfaces B: Biointerfaces, 129, 1–6.

    Article  Google Scholar 

  • Darder, M., Colilla, M., & Ruiz-Hitzky, E. (2003). Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chemical Materials, 15, 3774–3780.

    Article  Google Scholar 

  • Dong, H. (2012). Clay–microbe interactions and implications for environmental mitigation. Elements, 8, 113–118.

    Article  Google Scholar 

  • Eberl, D.D. (2007). User’s guide to RockJock: A program for determining quantitative mineralogy from powder X-ray diffraction data. U.S. Geological Survey, Open-file report 03–78. 48 pp.

  • Fomina, M., & Skorochod, I. (2020). Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals, 10, 861. https://doi.org/10.3390/min10100861

    Article  Google Scholar 

  • Garcia-Villén, F., Souza, I. M. S., Barbosa, R. M., Borrego-Sánchez, A., Sámcjez-Espejo, R., Ojeda-Riascos, S., & Iborra, C. V. (2020). Natural inorganic ingredients in wound healing. Current Pharmaceutical Design, 26, 621–641.

    Article  Google Scholar 

  • Gomes, C., Rautureau, M., Niel, J., & Gomes, J. (2021). Clay and clay mineral benefits and risks on human health from ancestral to current time: A synoptic overview. Clays and Clay Minerals (in press).

  • Haque, S., Nasar, A., & Inamuddin, A. M. A. (2018). Montmorillonite clay nanocomposites for drug delivery. In A. M. A. Inamuddin & M. Ali (Eds.), Applications of Nanocomposite Materials in Drug Delivery. Woodhead Publishing Series in Biomaterials. https://doi.org/10.1016/B978-0-12-813741-3.00039-X

    Chapter  Google Scholar 

  • Haydel, S. E., Remenih, C. M., & Williams, L. B. (2008). Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. Journal of Antimicrobial Chemotherapy, 61353–61361.

  • Imlay, J. A. (2019). Where in the world do bacteria experience oxidative stress? Environmental Microbiology, 21(2), 521–530.

    Article  Google Scholar 

  • Jaisi, D. P., Dong, H., Kim, J. W., He, Z., & Morton, J. P. (2007). Nontronite particle aggregation induced by microbial Fe (III). reduction and exopolysaccharide production. Clays and Clay Minerals, 55, 96–107.

    Article  Google Scholar 

  • Kim, C. K., Karau, M. J., Greenwood-Quaintance, K. E., Tilahun, A. Y., Krogman, A., David, C. S., Pritt, B. S., Patel, R., & Rajagopalan, G. (2015). Superantigen-producing Staphylococcus aureus elicits systemic immune activation in a murine wound colonization model. Toxins (Basel), 7, 5308–5319 PMCID: PMC 4690136.

    Article  Google Scholar 

  • Komadel, P., Madejová, J., & Stucki, J. W. (1999). Partial stabilization of Fe (II) in reduced ferruginous smectite by Li fixation. Clays and Clay Minerals, 47, 458–465.

    Article  Google Scholar 

  • Li, G. L., Zhou, C. H., Fiore, S., & Yu, W. H. (2019). Interactions between microorganisms and clay minerals: New insights and broader applications. Applied Clay Science, 177, 91–113.

    Article  Google Scholar 

  • Londoño, S. C., & Williams, L. B. (2016). Unraveling the antibacterial mode of action of a clay from the Colombian Amazon. Environmental Geochemistry and Health, 38(2), 363–379. https://doi.org/10.1007/s10653-015-9723-y

    Article  Google Scholar 

  • Londoño, S. C., Hartnett, H., & Williams, L. B. (2017). The antibacterial activity of aluminum in clay from the Colombian Amazon. Environmental Science and Technology, 51, 2401–2408. https://doi.org/10.1021/acs.est.6b04670

    Article  Google Scholar 

  • Marks, H., Bucknor, A., Roussakis, E., Nowell, N., Kamali, P., Cascales, J. P., Kazei, D., Lin, S. J., & Evans, C. L. (2020). A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap reconstruction. Science Advances, 6, eabd1061.

    Article  Google Scholar 

  • Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals (2nd ed.). Oxford University Press.

    Google Scholar 

  • Morrison, K. D., Underwood, J. C., Metge, D. W., Eberl, D. D., & Williams, L. B. (2014). Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit. Environmental Geochemistry and Health, 36(4), 613–631.

    Article  Google Scholar 

  • Morrison, K. D., Misra, R., & Williams, L. B. (2016). Unearthing the antibacterial mechanism of medicinal clay: A geochemical approach to combating antibiotic resistance. Nature Scientific Reports, 5, 19043. https://doi.org/10.1038/srep19043

    Article  Google Scholar 

  • Morrison, K. D., Williams, S. N., & Williams, L. B. (2017). The anatomy of an antibacterial clay deposit: A new economic geology. Economic Geology, 112(7), 1551–1570. https://doi.org/10.5382/econgeo.2017.4521

    Article  Google Scholar 

  • Müller, B. (2015). Experimental interactions between clay minerals and bacteria: A review. Pedosphere, 25(6), 799–810.

    Article  Google Scholar 

  • Naik, S. P., Sjolin, J., Ching, S., Chi, F., & Herpfer, M. (2018). Quorum sensing disruption in Vibrio harveyi bacteria by clay minerals. Journal of Agricultural and Food Chemistry, 66, 40–44.

    Article  Google Scholar 

  • Naylor, N. R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G. M., & Robotham, J. V. (2018). Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrobial Resistance and Infection Control, 7, 58. https://doi.org/10.1186/s13756-018-0336-y

    Article  Google Scholar 

  • Ochoa, M., Rahimi, R., Zhou, J., & many others. (2020). Integrated sensing and delivery of oxygen for next-generation smart wound dressings. Microsystems & Nanoengineering, 6, 46. https://doi.org/10.1038/s41378-020-0141-7

    Article  Google Scholar 

  • Otto, C. C., Kilbourne, J., & Haydel, S. E. (2016). Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous methicillin-resistant Staphylococcus aureus infections in mice. Journal of Medical Microbiology, 65, 19–27.

    Article  Google Scholar 

  • Photos-Jones, E., & Hall, A. J. (2011). Lemnian Earth and the earths of the Aegean, an archaeological guide to medicines, pigments and washing powders (p. 129). Potingair Press, Glasgow, UK

  • Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Springs Harbor. Perspectives in Biology, 2010(2), a000414.

    Google Scholar 

  • Sirvio, L. M., & Grussing, D. M. (1989). The effect of gas permeability of film dressings on wound environment and healing. The Journal of Investigative Dermatology, 93(4), 528–531. https://doi.org/10.1016/B978-1-78242-456-7.00019-2

    Article  Google Scholar 

  • Valko, M., Morris, H., & Cronin, M. T. D. (2005). Metals, toxicity, and oxidative stress. Current Medicinal Chemistry, 12, 1161–1208.

    Article  Google Scholar 

  • Wang, X., Dong, H., Zeng, Q., Xia, Q., Zhang, L., & Zhou, Z. (2017). Reduced iron-containing clay minerals as antibacterial agents. Environmental Science and Technology, 51, 7639–7647.

    Article  Google Scholar 

  • Werthén, M., Henriksson, L., Jensen, P., Sternberg, C., Givskov, M., & Bjarnholt, T. (2010). An in vitro model of bacterial infections in wounds and other soft tissues. Journal of Pathology, Microbiology and Immunology, 118, 156164. https://doi.org/10.1111/j.1600-0463.2009.02580.x

    Article  Google Scholar 

  • WHO (World Health Organization). (2019). IACG Interagency Coordination Group on Antimicrobial Resistance report to the Secretary General of the United Nations, No time to wait: Securing the future from drug-resistant infections. 25pp. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/

  • Williams, L. B. (2019). Natural antibacterial clays: Historical uses and modern advances. Clays and Clay Minerals, 67, 7–24.

    Article  Google Scholar 

  • Williams, L. B. (2021). Antibacterial Clays: Scientific investigation of their practical applications in medicine. Chapter 20. In R. Finkelman, M. Seigel, & O. Selinus (Eds.), Practical Applications of Medical Geology (pp. 671–696. ISBN 978-3-030-53892-7). Springer. https://doi.org/10.1007/978-3-030-53893-4_20

    Chapter  Google Scholar 

  • Williams, L. B., & Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52(7/8), 745–770.

    Article  Google Scholar 

  • Williams, L. B., Holland, M., Eberl, D. D., Brunet, T., & Brunet de Courssou, L. (2004). Killer Clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, 139, 3–8.

    Google Scholar 

  • Williams, L. B., Haydel, S. E., Giese, R. F., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals, 56, 437–452.

    Article  Google Scholar 

  • Williams, L. B., Haydel, S. E., & Ferrell, R. E. (2009). Bentonites, bandaids and borborygmi. Elements, 5(2), 99–102.

    Article  Google Scholar 

  • Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., & Poret-Peterson, A. T. (2011). What makes natural clays antibacterial? Environmental Science and Technology, 45, 3768–3773.

    Article  Google Scholar 

  • Winterbourn, C. C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology, 4, 278–286.

    Article  Google Scholar 

  • Xia, Q., Wang, X., Zeng, Q., Guo, D., Zhu, Z., Chen, H., & Dong, H. (2020). Mechanisms of enhanced antibacterial activity by reduced chitosan-intercalated nontronite. Environmental Science and Technology, 54, 5207–5217.

    Article  Google Scholar 

  • Yuan, G., & Xiong, Y. (2017). Characterizing the surface charge of clay minerals with Atomic Force Microscopy (AFM). AIMS Materials Science, 4(3), 582–593. https://doi.org/10.3934/matersci.2017.3.582

    Article  Google Scholar 

  • Zhao, H., Bhattacharjee, S., Chow, R., Wallace, D., Maslinyah, J. H., & Xu, Z. (2008). Probing surface charge potentials of clay basal planes and edges by direct force measurements. Langmuir, 24, 12899–12910. https://doi.org/10.1021/la802112h

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge Oregon Mineral Technologies Inc., for permission to study their clay deposit and thank Susan Selkirk at ASU for figure-drafting assistance. This work was funded by the U.S. National Science Foundation grant EAR-1719325 and by an ASU/Mayo seed grant for in vivo testing.

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda B. Williams.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

(Received 12 May 2021; revised 7 October 2021; AE: Jin-Ho Choy)

This paper belongs to a special issue on Clay Minerals in Health Applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, L.B., Schmidt-Malan, S.M. & Patel, R. Preliminary Evaluation of Natural Antibacterial Clays for Treating Wound Infections. Clays Clay Miner. 69, 589–602 (2021). https://doi.org/10.1007/s42860-021-00164-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00164-3

Keywords

Navigation