Skip to main content
Log in

The present condition and outlook for hydrogen-natural gas blending technology

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Korea’s economy should develop a safe and cost-effective hydrogen transport system to realize the hydrogen economy. Among the methods of hydrogen transport, pipelines are the only feasible means of achieving cost-effective and safe transport over longer distances. This technical report proposes a method that would allow for using existing natural gas pipelines to transport mixed gas (hydrogen-natural gas). The properties of the mixed gas, the durability of the pipeline caused by hydrogen embrittlement, and gas loss from leakage are reviewed according to the hydrogen ratio. In addition, several separation methods of mixed gas are introduced. From the survey of international research or pilot projects, if hydrogen is blended with a concentration less than 20%, that does not significantly affect gas quality, safety, risk, materials, and network capacity. This study also suggests the suitable hydrogen supply methods for domestic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEA, Global hydrogen demand by sector in the Sustainable Development Scenario, Paris (2020).

  2. Hydrogen Council, Hydrogen scaling up (2017).

  3. B. Moon, W. S. Lee and Y. S. Lee, KIGAS, 25, 1 (2021).

    Google Scholar 

  4. S. K. Ryi, J. Y. Han, C. H. Kim, H. K. Lim and H. Y. Jung, Clean Technol., 23, 121 (2017).

    Google Scholar 

  5. U.P.M. Ashik, W. W. Daud and H. F. Abbas, Renew. Sust. Energ. Rev., 44, 221 (2015).

    Article  CAS  Google Scholar 

  6. IEA, World Energy Outlook 2015, Paris (2015).

  7. E. Heracleous. Int. J. Hydrogen Energy, 36, 11501 (2011).

    Article  CAS  Google Scholar 

  8. A. Rödl, C. Wulf and M. Kaltschmitt, In Hydrogen Supply Chains, 3, 81 (2018).

    Article  Google Scholar 

  9. S. Sharma and S. K. Ghoshal, Renew. Sust. Energ. Rev., 43, 1151 (2015).

    Article  CAS  Google Scholar 

  10. C. Yang, and J. Ogden, Int. J. Energy Res., 32, 268 (2007).

    Google Scholar 

  11. A. Hugo, P. Rutter, S. Pistikopoulos, A. Amorelli and G. Zoia, Int. J. Energy Res., 30, 1523 (2005).

    CAS  Google Scholar 

  12. N. M. Konda, N. Shah and N. P. Brandon, Int. J. Energy Res., 36, 461 (2011).

    Google Scholar 

  13. A. Rödl, C. Wulf and M. Kaltschmitt, In Hydrogen Supply Chains, 2, 37 (2018).

    Google Scholar 

  14. J. Kim and I. Moon, Int. J. Hydrogen Energy, 33, 5887 (2008).

    Article  CAS  Google Scholar 

  15. D. Haeseldonckx and W. D’haeseleer, Int. J. Hydrogen Energy, 36, 4636 (2011).

    Article  CAS  Google Scholar 

  16. A. Rödl, C. Wulf and M. Kaltschmitt, In Hydrogen Supply Chains, 6, 207 (2018).

    Google Scholar 

  17. http://www.h2news.kr/news/article.html?no=7664 (accessed June 30, 2021).

  18. National Research Council, The hydrogen economy: opportunities, costs, barriers, and R&D needs. National Academies Press, USA (2004).

    Google Scholar 

  19. U.S. Drive., Hydrogen delivery roadmap, USA (2017).

  20. N. Grasso, F. Pilo, N. Ciannelli, M. N. Carcassi, N. Mattei and F. Ceccherini, Int. J. Hydrogen Energy, 34, 4678 (2009).

    Article  Google Scholar 

  21. https://www.thechemicalengineer.com/features/hydrogen-transport/ (accessed June 30, 2021).

  22. HyARC, Hydrogen Pipelines., h2tools (2017).

  23. http://www.h2news.kr/mobile/article.html?no=8554 (accessed June 30, 2021).

  24. DOE, Hydrogen delivery infrastructure analysis, USA (2013).

  25. D. G. Stalheim, K. R. Barnes and D. B. Mccutcheon, CBMM/TMS (2006).

  26. J. Capelle, J. Gilgert, I. Dmytrakh and G. Pluvinage, Int. J. Hydrogen Energy, 33, 7630 (2008).

    Article  CAS  Google Scholar 

  27. D. Hardie, E. A. Charles and A. H. Lopez, Corros. Sci., 48, 4378 (2006).

    Article  CAS  Google Scholar 

  28. J. R. Fekete, J. W. Sowards and R. L. Amaro, Int. J. Hydrogen Energy, 40, 10547 (2015).

    Article  CAS  Google Scholar 

  29. https://www.kogas.or.kr:9450/portal/contents.do?key=2015#self (accessed June 30, 2021).

  30. https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipe-lines.php (accessed June 30, 2021).

  31. U.S. Energy Information Administration, Annual Energy Outlook, EIA (2021).

  32. Z. L. Messaoudani, F. Rigas, M. D. B. Hamid and C. R. C. Hassan, Int. J. Hydrogen Energy, 41, 17511 (2016).

    Article  CAS  Google Scholar 

  33. D. Haeseldonckx and W. D’haeseleer, Int. J. Hydrogen Energy, 32, 1381 (2007).

    Article  CAS  Google Scholar 

  34. IET, Techno-economic assessment of hydrogen transmission & distribution systems in Europe in the medium and long term, Netherlands (2005).

  35. A. Rusin and K. Stolecka, J. Loss Prev. Process Ind., 33, 77 (2015).

    Article  CAS  Google Scholar 

  36. F. Tabkhi, C. Azzaro-Pantel, L. Pibouleau and S. Domenech, Int. J. Hydrogen Energy, 33, 6222 (2008).

    Article  CAS  Google Scholar 

  37. NREL, Blending hydrogen into natural gas pipeline networks: A Review of key issues, USA (2013).

  38. E. R. Authority, Gas Exchangeability in Western Australia, Australia (2007).

  39. Energy Pipelines CRC, Identifying the commercial, technical and regulatory issues for injecting renewable gas in Australian distribution gas networks, Australia (2017).

  40. GPA Engineering, Hydrogen in the gas distribution networks, Australia (2019).

  41. K. Altfeld and D. Pinchbeck, Gas Energy, 2103, 1 (2013).

    Google Scholar 

  42. https://www.greentechmedia.com/articles/read/green-hydrogen-in-natural-gas-pipelines-decarbonization-solution-or-pipe-dream (accessed June 30, 2021).

  43. Y. J. Joo, M. Y. Kim, J. G. Park, S. I. Park and J. G. Shin, KHNES, 31, 351 (2020).

    Article  Google Scholar 

  44. B. Meng, C. Gu, L. Zhang, C. Zhou, Y. Z. Zhao, J. Zheng and Y. Hand, International Conference on Hydrogen Safety, China (2015).

  45. S. Kuczyński, M. Łaciak, A. Olijnyk, A. Szurlej and T. Włodek, Energies, 12, 569 (2019).

    Article  Google Scholar 

  46. J. Jaworski, P. Kulaga and T. Blacharski, Energies, 13, 3006 (2020).

    Article  CAS  Google Scholar 

  47. J. R. Fekete, J. W. Sowards and R. L. Amaro, Int. J. Hydrogen Energy, 40, 10547 (2015).

    Article  CAS  Google Scholar 

  48. R. P. Gangloff and B. P. Somerday, Gaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterisation and effects on particular alloy classes, Woodhead Publishing, UK (2012).

    Book  Google Scholar 

  49. PG&E, Hydrogen Technical Analysis, USA (2018).

  50. F. Rigas and P. Amyotte, Chem. Eng. Trans., 31, 913 (2013).

    Google Scholar 

  51. E. A. Polman, J. C. De Laat and M. Crowther, IEA Green House Gas R&D programme (2003).

  52. M. Soudani, M. H. Meliani, K. El-Miloudi, O. Bouledroua, C. Fares, M. A. Benghalia and G. Pluvinag, J. Bio-and Tribo-Corrosion, 4, 1 (2018).

    Article  Google Scholar 

  53. C. Verma, M. Quraishi and A. Singh, J. Taibah Univ. Sci., 10, 718 (2016).

    Article  Google Scholar 

  54. M. Mobin, S. Zehra and M. Parveen, J. Mol. Liq., 216, 598 (2016).

    Article  CAS  Google Scholar 

  55. https://internalpipeline.com/ (accessed June 30, 2021).

  56. F. F. Eliyan and A. Eliyan, Recent aspects of oil and gas internal pipeline corrosion control, 1st Corrosion and Materials Degradation Web Conference, Switzerland (2021).

  57. https://www.yna.co.kr/view/AKR20190704095651062 (accessed June 30, 2021).

  58. https://www.h2news.kr/mobile/article.html?no=7651 (accessed June 30, 2021).

  59. I. Tommy, Clean Energy, 3, 114 (2019).

    Article  Google Scholar 

  60. PG&E, Pipeline Hydrogen, USA (2018).

  61. W. Liemberger, M. Groß, M. Miltner and M. Harasek, J. Clean. Prod., 167, 896 (2017).

    Article  CAS  Google Scholar 

  62. A. Streb and M. Mazzotti, Adsorption, 27, 559 (2021).

    Article  CAS  Google Scholar 

  63. D. Q. Vu, W. J. Koros and S. J. Miller, J. Membr. Sci., 211, 335 (2003).

    Article  CAS  Google Scholar 

  64. L. Schorer, S. Schmitz and A. Weber, Int. J. Hydrogen Energy, 44, 12708 (2019).

    Article  CAS  Google Scholar 

  65. H. Yin and A. C. Yip, Catalysts, 7, 297 (2017).

    Article  Google Scholar 

  66. B. Zornoza, C. Casado and A. Navajas, Advances in hydrogen separation and purification with membrane technology, Elsevier, Netherlands (2013).

    Book  Google Scholar 

  67. B. Freeman, Y. Yampolskii and I. Pinnau, Materials science of membranes for gas and vapor separation, John Wiley & Sons (2006).

  68. L. Cao, K. M. Iris, X. Xiong, D. C. Tsang, S. Zhang, J. H. Clark and Y. S. Ok, Environ. Res., 186, 109547 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. M. Rhandi, M. Trégaro, F. Druart, J. Deseure and M. Chatenet, Chinese J. Catal., 41, 756 (2020).

    Article  CAS  Google Scholar 

  70. L. Vermaak, H. W. Neomagus and D. G. Bessarabov, Membranes, 11, 127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. S. A. Grigoriev, I. G. Shtatniy, P. Millet, V. I. Porembsky and V. N. Fateev, Int. J. Hydrogen Energy, 36, 4148 (2011).

    Article  CAS  Google Scholar 

  72. A. Pulyalina, G. Polotskaya, V. Rostovtseva, Z. Pientka and A. Toikka, Polymers, 10, 828 (2018).

    Article  PubMed Central  Google Scholar 

  73. L. Li, R. Xu, C. Song, B. Zhang, Q. Liu and T. Wang, Membranes, 8, 134 (2018).

    Article  PubMed Central  Google Scholar 

  74. https://www.eon.com/en/about-us/media/press-release/2020/unique-project-in-germany-natural-gas-pipeline-is-converted-to-pure-hydrogen.html (accessed June 30, 2021).

  75. https://www.dvgw.de/themen/forschung-und-innovation/forschungsprojekte/dvgw-forschungsprojekt-h2-20/ (accessed June 30, 2021).

  76. http://www.h2news.kr/news/article.html?no=8590 (accessed June 30, 2021).

  77. https://www.eon.com/en/business-customers/hydrogen-rediscovery-of-the-oldest-element.html (accessed June 30, 2021).

  78. http://www.h2news.kr/news/article.html?no=8761 (accessed June 30, 2021).

  79. https://www.prnewswire.com/news-releases/socalgas-and-sdge-announce-groundbreaking-hydrogen-blending-demonstration-program-to-help-reduce-carbon-emissions-301178982.html (accessed June 30, 2021).

  80. https://www.socalgas.com/clean-energy/renewable-gas/power-to-gas (accessed June 30, 2021).

  81. INIS, Technical and economic conditions for injecting hydrogen into natural gas networks, France (2019).

  82. https://www.engie.com/en/businesses/gas/hydrogen/power-to-gas/the-grhyd-demonstration-project (accessed June 30, 2021).

  83. https://www.australiangasnetworks.com.au/our-business/about-us/media-releases/australian-first-hydrogen-pilot-plant-to-be-built-in-adelaide (accessed June 30, 2021).

  84. https://www.australiangasnetworks.com.au/hyp-sa (accessed June 30, 2021).

  85. https://www.australiangasnetworks.com.au/hyp-gladstone (accessed June 30, 2021).

  86. https://www.h2news.kr/news/article.html?no=8034 (accessed June 30, 2021).

  87. https://www.atco.com/en-ca/about-us/news/2020/122900-atco-to-build-alberta-s-first-hydrogen-blending-project-with-era.html (accessed June 30, 2021).

  88. https://www.atco.com/en-ca/for-home/natural-gas/hydrogen.html (accessed June 30, 2021).

  89. IGRC, Hydrogen injection in natural gas on island of ameland in the Netherlands, Netherland (2011).

Download references

Acknowledgements

This paper was supported by research funds of Jeonbuk National University in 2020, the Institute of Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-01557, 2021-0-02129) and Korea Agency for Infrastructure Technology Advancement grant funded by Ministry of Land, Infrastructure and Transport (21IFIP-B133607-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, M.J., Kim, J.H., Moon, B. et al. The present condition and outlook for hydrogen-natural gas blending technology. Korean J. Chem. Eng. 39, 251–262 (2022). https://doi.org/10.1007/s11814-021-0960-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0960-8

Keywords

Navigation