Skip to main content

Advertisement

Log in

Necrotic reshaping of the glioma microenvironment drives disease progression

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Glioblastoma is the most common primary brain tumor and has a dismal prognosis. The development of central necrosis represents a tipping point in the evolution of these tumors that foreshadows aggressive expansion, swiftly leading to mortality. The onset of necrosis, severe hypoxia and associated radial glioma expansion correlates with dramatic tumor microenvironment (TME) alterations that accelerate tumor growth. In the past, most have concluded that hypoxia and necrosis must arise due to “cancer outgrowing its blood supply” when rapid tumor growth outpaces metabolic supply, leading to diffusion-limited hypoxia. However, growing evidence suggests that microscopic intravascular thrombosis driven by the neoplastic overexpression of pro-coagulants attenuates glioma blood supply (perfusion-limited hypoxia), leading to TME restructuring that includes breakdown of the blood–brain barrier, immunosuppressive immune cell accumulation, microvascular hyperproliferation, glioma stem cell enrichment and tumor cell migration outward. Cumulatively, these adaptations result in rapid tumor expansion, resistance to therapeutic interventions and clinical progression. To inform future translational investigations, the complex interplay among environmental cues and myriad cell types that contribute to this aggressive phenotype requires better understanding. This review focuses on contributions from intratumoral thrombosis, the effects of hypoxia and necrosis, the adaptive and innate immune responses, and the current state of targeted therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  2. Åberg M, Eriksson O, Siegbahn A (2015) Tissue factor noncoagulant signaling: mechanisms and implications for cell migration and apoptosis. Semin Thromb Hemostat 41:691–699

    Article  Google Scholar 

  3. Achyut BR, Angara K, Jain M, Borin TF, Rashid MH, Iskander ASM et al (2017) Canonical NFκB signaling in myeloid cells is required for the glioblastoma growth. Sci Rep. https://doi.org/10.1038/s41598-017-14079-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. An Z, Knobbe-Thomsen CB, Wan X, Fan QW, Reifenberger G, Weiss WA (2018) EGFR cooperates with EGFRvIII to recruit macrophages in glioblastoma. Cancer Res 78:6785–6794. https://doi.org/10.1158/0008-5472.Can-17-3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anfray C, Ummarino A, Andón FT, Allavena P (2019) Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cells 1:46. https://doi.org/10.3390/cells9010046

    Article  CAS  Google Scholar 

  6. Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF et al (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284:24035–24048. https://doi.org/10.1074/jbc.m109.014266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177:1491–1502. https://doi.org/10.2353/ajpath.2010.091021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrett JA, Cai H, Miao J, Khare PD, Gonzalez P, Dalsing-Hernandez J et al (2018) Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System® (RTS®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther 25:106–116. https://doi.org/10.1038/s41417-018-0019-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartoschek M, Pietras K (2018) PDGF family function and prognostic value in tumor biology. Biochem Biophys Res Commun 503:984–990. https://doi.org/10.1016/j.bbrc.2018.06.106

    Article  CAS  PubMed  Google Scholar 

  10. Bassi R, Giussani P, Anelli V, Colleoni T, Pedrazzi M, Patrone M et al (2008) HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. J Neurooncol 87:23–33. https://doi.org/10.1007/s11060-007-9488-y

    Article  CAS  PubMed  Google Scholar 

  11. Basu S (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappaB pathway. Int Immunol 12:1539–1546. https://doi.org/10.1093/intimm/12.11.1539

    Article  CAS  PubMed  Google Scholar 

  12. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and Calreticulin. Immunity 14:303–313. https://doi.org/10.1016/s1074-7613(01)00111-x

    Article  CAS  PubMed  Google Scholar 

  13. Bennett JP, Keeney PM, Brohawn DG (2019) RNA sequencing reveals small and variable contributions of infectious agents to transcriptomes of postmortem nervous tissues from amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease subjects, and increased expression of genes from D. Front Neurosci 13:235. https://doi.org/10.3389/fnins.2019.00235

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L et al (2019) Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep 27:2895–2908. https://doi.org/10.1016/j.celrep.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  15. Bhaduri A, Di Lullo E, Jung D, Muller S, Crouch EE, Espinosa CS et al (2020) Outer radial glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell 26:48–63. https://doi.org/10.1016/j.stem.2019.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boulakirba S, Pfeifer A, Mhaidly R, Obba S, Goulard M, Schmitt T et al (2018) IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Sci Rep 8:256. https://doi.org/10.1038/s41598-017-18433-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404. https://doi.org/10.1016/j.pharmthera.2005.04.013

    Article  CAS  PubMed  Google Scholar 

  18. Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH et al (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64:920–927. https://doi.org/10.1158/0008-5472.can-03-2073

    Article  CAS  PubMed  Google Scholar 

  19. Brat DJ, Prayson RA, Ryken TC, Olson JJ (2008) Diagnosis of malignant glioma: role of neuropathology. J Neurooncol 89:287–311. https://doi.org/10.1007/s11060-008-9618-1

    Article  PubMed  Google Scholar 

  20. Brat DJ, Van Meir EG (2004) Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 84:397–405. https://doi.org/10.1038/labinvest.3700070

    Article  CAS  PubMed  Google Scholar 

  21. Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B et al (2017) White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis 1863:2614–2626. https://doi.org/10.1016/j.bbadis.2017.05.020

    Article  CAS  PubMed  Google Scholar 

  22. Brennan Cameron W, Verhaak Roel GW, McKenna A, Campos B, Noushmehr H et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caiazzo A, Ramis-Conde I (2015) Multiscale modelling of palisade formation in gliobastoma multiforme. J Theor Biol 383:145–156. https://doi.org/10.1016/j.jtbi.2015.07.021

    Article  PubMed  Google Scholar 

  24. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82. https://doi.org/10.1016/j.ccr.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  25. Cameron R, McKenna A, Campos B, Noushmehr H, Sofie R, Zheng S et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  Google Scholar 

  26. Caponegro MD, Oh K, Madeira MM, Radin D, Sterge N, Tayyab M et al (2021) A distinct microglial subset at the tumor–stroma interface of glioma. Glia 69:1767–1781. https://doi.org/10.1002/glia.23991

    Article  PubMed  PubMed Central  Google Scholar 

  27. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474. https://doi.org/10.1038/nature26000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caruso R, Parisi A, Bonanno A, Paparo D, Quattrocchi E, Branca G et al (2012) Histologic coagulative tumour necrosis as a prognostic indicator of aggressiveness in renal, lung, thyroid and colorectal carcinomas: a brief review. Oncol Lett 3:16–18. https://doi.org/10.3892/ol.2011.420

    Article  PubMed  Google Scholar 

  29. Catalano M, D’Alessandro G, Trettel F, Limatola C (2020) Role of infiltrating microglia/macrophages in glioma. Adv Exp Med Biol 1202:281–298. https://doi.org/10.1007/978-3-030-30651-9_14

    Article  CAS  PubMed  Google Scholar 

  30. Catar R, Moll G, Hosp I, Simon M, Luecht C, Zhao H et al (2021) Transcriptional regulation of thrombin-induced endothelial VEGF induction and proangiogenic response. Cells 10:910. https://doi.org/10.3390/cells10040910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cayrol C, Girard JP (2009) The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci 106:9021–9026. https://doi.org/10.1073/pnas.0812690106

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563. https://doi.org/10.1016/j.cell.2015.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chandrasekar N, Mohanam S, Gujrati M, Olivero WC, Dinh DH, Rao JS (2003) Downregulation of uPA inhibits migration and PI3k/Akt signaling in glioblastoma cells. Oncogene 22:392–400. https://doi.org/10.1038/sj.onc.1206164

    Article  CAS  PubMed  Google Scholar 

  34. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D et al (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Can Res 76:5671–5682. https://doi.org/10.1158/0008-5472.can-16-0144

    Article  CAS  Google Scholar 

  35. Chang WH, Lai AG (2019) Transcriptional landscape of DNA repair genes underpins a pan-cancer prognostic signature associated with cell cycle dysregulation and tumor hypoxia. DNA Repair 78:142–153. https://doi.org/10.1016/j.dnarep.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  36. Chen C-J, Kono H, Golenbock D, Reed G, Akira S, Rock KL (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856. https://doi.org/10.1038/nm1603

    Article  CAS  PubMed  Google Scholar 

  37. Chen J-WE, Pedron S, Shyu P, Hu Y, Sarkaria JN, Harley BAC (2018) Influence of hyaluronic acid transitions in tumor microenvironment on glioblastoma malignancy and invasive behavior. Front Mater. https://doi.org/10.3389/fmats.2018.00039

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW et al (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Can Res 77:2266–2278. https://doi.org/10.1158/0008-5472.can-16-2310

    Article  CAS  Google Scholar 

  39. Chen Z, Hambardzumyan D (2018) Immune microenvironment in glioblastoma subtypes. Front Immunol 9:1004. https://doi.org/10.3389/fimmu.2018.01004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen Z, Herting CJ, Ross JL, Gabanic B, Puigdelloses Vallcorba M et al (2020) Genetic driver mutations introduced in identical cell-of-origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia 68:2148–2166. https://doi.org/10.1002/glia.23883

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen Z, Ross JL, Hambardzumyan D (2019) Intravital 2-photon imaging reveals distinct morphology and infiltrative properties of glioblastoma-associated macrophages. Proc Natl Acad Sci 116:14254–14259. https://doi.org/10.1073/pnas.1902366116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249. https://doi.org/10.1084/jem.20080132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng W, Ren X, Zhang C, Cai J, Liu Y, Han S et al (2016) Bioinformatic profiling identifies an immune-related risk signature for glioblastoma. Neurology 86:2226–2234. https://doi.org/10.1212/wnl.0000000000002770

    Article  CAS  PubMed  Google Scholar 

  44. Choi BD, Fecci PE, Sampson JH (2012) Regulatory T cells move in when gliomas say “I DO.” Clin Cancer Res 18:6086–6088. https://doi.org/10.1158/1078-0432.ccr-12-2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clarke RH, Moosa S, Anzivino M, Wang Y, Floyd DH, Purow BW et al (2014) Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment in an animal model of glioblastoma and in vitro models of tumor hypoxia. PLoS ONE 9:e111199. https://doi.org/10.1371/journal.pone.0111199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corrigan F, Mander KA, Leonard AV, Vink R (2016) Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflamm 13:264. https://doi.org/10.1186/s12974-016-0738-9

    Article  CAS  Google Scholar 

  47. Couto M, Coelho-Santos V, Santos L, Fontes-Ribeiro C, Silva AP, Gomes CMF (2019) The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway. J Cell Physiol 234:19750–19760. https://doi.org/10.1002/jcp.28575

    Article  CAS  PubMed  Google Scholar 

  48. Cummings TJ, Hulette CM, Bigner SH, Riggins GJ, McLendon RE (2000) HAM56-immunoreactive macrophages in untreated infiltrating gliomas. Arch Pathol Lab Med 125:637–641

    Article  Google Scholar 

  49. Dai Z, Zhu MM, Peng Y, Machireddy N, Evans CE, Machado R et al (2018) Therapeutic targeting of vascular remodeling and right heart failure in PAH with HIF-2α inhibitor. Am J Respir Crit Care Med 198:1423–1434. https://doi.org/10.1164/rccm.201710-2079oc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081. https://doi.org/10.1016/j.cell.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  51. Deryugina EI, Soroceanu L, Strongin AY (2002) Up-Regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis. Can Res 62:580–588

    CAS  Google Scholar 

  52. Deutsch MB, Panageas KS, Lassman AB, DeAngelis LM (2013) Steroid management in newly diagnosed glioblastoma. J Neurooncol 113:111–116. https://doi.org/10.1007/s11060-013-1096-4

    Article  CAS  PubMed  Google Scholar 

  53. Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S et al (2019) Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun 10:1787. https://doi.org/10.1038/s41467-019-09853-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Doucette T, Rao G, Rao A, Shen L, Aldape K, Wei J et al (2013) Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas. Cancer Immunol Res 1:112–122. https://doi.org/10.1158/2326-6066.cir-13-0028

    Article  CAS  PubMed  Google Scholar 

  55. Du W, Bos PD (2020) Tracing bone marrow-derived microglia in brain metastatic tumors. Methods Enzymol. https://doi.org/10.1016/bs.mie.2019.08.017

    Article  PubMed  Google Scholar 

  56. Dubinski DJ, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H et al (2015) CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol 18:807–818. https://doi.org/10.1093/neuonc/nov280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Echizenya S, Ishii Y, Kitazawa S, Tanaka T, Matsuda S, Watanabe E et al (2019) Discovery of a new pyrimidine synthesis inhibitor eradicating glioblastoma-initiating cells. Neuro Oncol 22(2):29–239. https://doi.org/10.1093/neuonc/noz170

    Article  CAS  Google Scholar 

  58. Edwin NC, Khoury MN, Sohal D, McCrae KR, Ahluwalia MS, Khorana AA (2016) Recurrent venous thromboembolism in glioblastoma. Thromb Res 137:184–188. https://doi.org/10.1016/j.thromres.2015.11.027

    Article  CAS  PubMed  Google Scholar 

  59. Eigenbrod T, Park J-H, Harder J, Iwakura Y, Núñez G (2008) Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1α released from dying cells. J Immunol 181:8194–8198. https://doi.org/10.4049/jimmunol.181.12.8194

    Article  CAS  PubMed  Google Scholar 

  60. Elste AP, Petersen I (2010) Expression of proteinase-activated receptor 1–4 (PAR 1–4) in human cancer. J Mol Histol 41:89–99. https://doi.org/10.1007/s10735-010-9274-6

    Article  CAS  PubMed  Google Scholar 

  61. Feng X, Szulzewsky F, Yerevanian A, Chen Z, Heinzmann D, Rasmussen RD et al (2015) Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget 6:15077–15094. https://doi.org/10.18632/oncotarget.3730

    Article  PubMed  PubMed Central  Google Scholar 

  62. Feng X, Zhang H, Meng L, Song H, Zhou Q, Qu C et al (2020) Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5. Autophagy 17(3):723–742. https://doi.org/10.1080/15548627.2020.1731266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Filatova A, Acker T, Garvalov BK (2013) The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta 1830:2496–2508. https://doi.org/10.1016/j.bbagen.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  64. Fu Y, Wang D, Wang H, Cai M, Li C, Zhang X et al (2019) TSPO deficiency induces mitochondrial dysfunction, leading to hypoxia, angiogenesis and a growth-promoting metabolic shift towards glycolysis in glioblastoma. Neuro Oncol 22(2):240–252. https://doi.org/10.1093/neuonc/noz183

    Article  CAS  PubMed Central  Google Scholar 

  65. Galstyan A, Markman JL, Shatalova ES, Chiechi A, Korman AJ, Patil R et al (2019) Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun 10:3850. https://doi.org/10.1038/s41467-019-11719-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao Y, Liu B, Feng L, Sun B, He S, Yang Y et al (2019) Targeting JUN, CEBPB, and HDAC3: a novel strategy to overcome drug resistance in hypoxic glioblastoma. Front Oncol 9:33. https://doi.org/10.3389/fonc.2019.00033

    Article  PubMed  PubMed Central  Google Scholar 

  67. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159. https://doi.org/10.1126/science.1082504

    Article  CAS  PubMed  Google Scholar 

  68. Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J et al (2019) Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179:1609-1622 e1616. https://doi.org/10.1016/j.cell.2019.11.010

    Article  CAS  PubMed  Google Scholar 

  69. Gil-Bernabé AM, Ferjancic S, Tlalka M, Zhao L, Allen PD, Im JH et al (2012) Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119:3164–3175. https://doi.org/10.1182/blood-2011-08-376426

    Article  CAS  PubMed  Google Scholar 

  70. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gofrit S, Shavit-Stein E (2019) The neuro-glial coagulonome: the thrombin receptor and coagulation pathways as major players in neurological diseases. Neural Regen Res 14:2043. https://doi.org/10.4103/1673-5374.262568

    Article  PubMed  PubMed Central  Google Scholar 

  72. Graham CH, Forsdike J, Fitzgerald CJ, Macdonald-Goodfellow S (1999) Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. Int J Cancer 80:617–623. https://doi.org/10.1002/(sici)1097-0215(19990209)80:4%3c617::aid-ijc22%3e3.0.co;2-c

    Article  CAS  PubMed  Google Scholar 

  73. Greenhalgh AD, Brough D, Robinson EM, Girard S, Rothwell NJ, Allan SM (2012) Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. Dis Model Mech 5:823–833. https://doi.org/10.1242/dmm.008557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grégoire H, Roncali L, Rousseau A, Chérel M, Delneste Y, Jeannin P et al (2020) Targeting tumor associated macrophages to overcome conventional treatment resistance in glioblastoma. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00368

    Article  PubMed  PubMed Central  Google Scholar 

  75. Griess B, Mir S, Datta K, Teoh-Fitzgerald M (2020) Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radical Biol Med 147:48–60. https://doi.org/10.1016/j.freeradbiomed.2019.12.018

    Article  CAS  Google Scholar 

  76. Gularyan SK, Gulin AA, Anufrieva KS, Shender V, Shakhparonov MI, Bastola S et al (2020) Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS. Mol Cell Proteomics mcp.RA120.00198. https://doi.org/10.1074/mcp.ra120.001986

  77. Haage V, Semtner M, Vidal RO, Hernandez DP, Pong WW, Chen Z et al (2019) Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-019-0665-y

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–448. https://doi.org/10.1101/gad.1627008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hambardzumyan D, Bergers G (2015) Glioblastoma: defining tumor niches. Trends Cancer 1:252–265. https://doi.org/10.1016/j.trecan.2015.10.009

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27. https://doi.org/10.1038/nn.4185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hambardzumyan D, Squatrito M, Carbajal E, Holland EC (2008) Glioma formation, cancer stem cells, and Akt signaling. Stem Cell Rev 4:203–210. https://doi.org/10.1007/s12015-008-9021-5

    Article  CAS  PubMed  Google Scholar 

  82. Han D, Yu T, Dong N, Wang B, Sun F, Jiang D (2019) Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-019-1289-6

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. https://doi.org/10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  84. Heddleston JM, Wu Q, Rivera M, Minhas S, Lathia JD, Sloan AE et al (2012) Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ 19:428–439. https://doi.org/10.1038/cdd.2011.109

    Article  CAS  PubMed  Google Scholar 

  85. Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W et al (2008) Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res 14:5166–5172. https://doi.org/10.1158/1078-0432.ccr-08-0320

    Article  CAS  PubMed  Google Scholar 

  86. Henze A-T, Mazzone M (2016) The impact of hypoxia on tumor-associated macrophages. J Clin Investig 126:3672–3679. https://doi.org/10.1172/jci84427

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hernandez C, Huebener P, Schwabe RF (2016) Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 35:5931–5941. https://doi.org/10.1038/onc.2016.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Herting CJ, Chen Z, Maximov V, Duffy A, Szulzewsky F, Shayakhmetov DM et al (2019) Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain. https://doi.org/10.1093/brain/awz331

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hira VVV, Aderetti DA, Van Noorden CJF (2018) Glioma stem cell niches in human glioblastoma are periarteriolar. J Histochem Cytochem. https://doi.org/10.1369/0022155417752676

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hoffmann C, Mao X, Brown-Clay J, Moreau F, Al Absi A, Wurzer H et al (2018) Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2. Sci Rep 8:10191. https://doi.org/10.1038/s41598-018-28637-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901. https://doi.org/10.1016/s0092-8674(00)80801-6

    Article  CAS  PubMed  Google Scholar 

  92. Holla FK, Postma TJ, Blankenstein MA, Van Mierlo TJM, Vos MJ, Sizoo EM et al (2016) Prognostic value of the S100B protein in newly diagnosed and recurrent glioma patients: a serial analysis. J Neurooncol 129:525–532. https://doi.org/10.1007/s11060-016-2204-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Homma T, Fukushima T, Vaccarella S, Yonekawa Y, Di Patre PL, Franceschi S et al (2006) Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol 65:846–854. https://doi.org/10.1097/01.jnen.0000235118.75182.94

    Article  CAS  PubMed  Google Scholar 

  94. Hong B, Muili K, Bolyard C, Russell L, Lee TJ, Banasavadi-Siddegowda Y et al (2019) Suppression of HMGB1 released in the glioblastoma tumor microenvironment reduces tumoral edema. Mol Therapy Oncolytics 12:93–102. https://doi.org/10.1016/j.omto.2018.11.005

    Article  CAS  Google Scholar 

  95. Hope C, Foulcer S, Jagodinsky J, Chen SX, Jensen JL, Patel S et al (2016) Immunoregulatory roles of versican proteolysis in the myeloma microenvironment. Blood 128:680–685. https://doi.org/10.1182/blood-2016-03-705780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hori M, Mori H, Aoki S, Abe O, Masumoto T, Kunimatsu S et al (2010) Three-dimensional susceptibility-weighted imaging at 3 T using various image analysis methods in the estimation of grading intracranial gliomas. Magn Reson Imaging 28:594–598. https://doi.org/10.1016/j.mri.2010.01.002

    Article  PubMed  Google Scholar 

  97. Hsu SPC, Chen Y-C, Chiang H-C, Huang Y-C, Huang C-C, Wang H-E et al (2020) Rapamycin and hydroxychloroquine combination alters macrophage polarization and sensitizes glioblastoma to immune checkpoint inhibitors. J Neurooncol 146:417–426. https://doi.org/10.1007/s11060-019-03360-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hu FA, Dzaye OD, Hahn A, Yu Y, Scavetta RJ, Dittmar G et al (2015) Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro Oncol 17:200–210. https://doi.org/10.1093/neuonc/nou324

    Article  CAS  PubMed  Google Scholar 

  99. Hu S, Wu G, Zheng J, Liu X, Zhang Y (2019) Astrocytic thrombin-evoked VEGF release is dependent on p44/42 MAPKs and PAR1. Biochem Biophys Res Commun 509:585–589. https://doi.org/10.1016/j.bbrc.2018.12.168

    Article  CAS  PubMed  Google Scholar 

  100. Huang M, Zhang D, Wu JY, Xing K, Yeo E, Li C et al (2020) Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med 12:eaay522. https://doi.org/10.1126/scitranslmed.aay7522

    Article  CAS  Google Scholar 

  101. Hubert P, Roncarati P, Demoulin S, Pilard C, Ancion M, Reynders C et al (2021) Extracellular HMGB1 blockade inhibits tumor growth through profoundly remodeling immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. J Immunother Cancer 9:e001966. https://doi.org/10.1136/jitc-2020-001966

    Article  PubMed  PubMed Central  Google Scholar 

  102. Inukai M, Hara A, Yasui Y, Kumabe T, Matsumoto T, Saegusa M (2015) Hypoxia-mediated cancer stem cells in pseudopalisades with activation of hypoxia-inducible factor-1alpha/Akt axis in glioblastoma. Hum Pathol 46:1496–1505. https://doi.org/10.1016/j.humpath.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  103. Irtenkauf SM, Sobiechowski S, Hasselbach LA, Nelson KK, Transou AD, Carlton ET et al (2017) Optimization of glioblastoma mouse orthotopic xenograft models for translational research. Comp Med 67:300–314

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ishikawa E, Miyazaki T, Takano S, Akutsu H (2021) Anti-angiogenic and macrophage-based therapeutic strategies for glioma immunotherapy. Brain Tumor Pathol. https://doi.org/10.1007/s10014-021-00402-5

    Article  PubMed  Google Scholar 

  105. Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK et al (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci 106:20388–20393. https://doi.org/10.1073/pnas.0908698106

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jackson CM, Choi J, Lim M (2019) Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. https://doi.org/10.1038/s41590-019-0433-y

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH et al (2020) A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180:188-204e122. https://doi.org/10.1016/j.cell.2019.11.036

    Article  CAS  PubMed  Google Scholar 

  108. Jahchan NS, Mujal AM, Pollack JL, Binnewies M, Sriram V, Reyno L et al (2019) Tuning the tumor myeloid microenvironment to fight cancer. Front Immunol. https://doi.org/10.3389/fimmu.2019.01611

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jayaprakash P, Dong H, Zou M, Bhatia A, O’Brien K, Chen M et al (2015) Hsp90 and Hsp90 together operate a hypoxia and nutrient paucity stress-response mechanism during wound healing. J Cell Sci 128:1475–1480. https://doi.org/10.1242/jcs.166363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflamm. https://doi.org/10.1186/s12974-019-1516-2

    Article  Google Scholar 

  111. Jeanmougin M, Håvik AB, Cekaite L, Brandal P, Sveen A, Meling TR et al (2020) Improved prognostication of glioblastoma beyond molecular subtyping by transcriptional profiling of the tumor microenvironment. Mol Oncol 14:1016–1027. https://doi.org/10.1002/1878-0261.12668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y et al (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173–1179. https://doi.org/10.1038/nm1315

    Article  CAS  PubMed  Google Scholar 

  113. Johnson GB, Brunn GJ, Kodaira Y, Platt JL (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by toll-like receptor 4. J Immunol 168:5233–5239. https://doi.org/10.4049/jimmunol.168.10.5233

    Article  CAS  PubMed  Google Scholar 

  114. Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB (2008) Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57:123–131. https://doi.org/10.1007/s00262-007-0336-x

    Article  CAS  PubMed  Google Scholar 

  115. Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E et al (2015) Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α–ZEB1 axis. Cancer Lett 359:107–116. https://doi.org/10.1016/j.canlet.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  116. Jung E, Osswald M, Ratliff M, Dogan H, Xie R, Weil S et al (2021) Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat Commun. https://doi.org/10.1038/s41467-021-21117-3

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jung J, Zhang Y, Celiku O, Zhang W, Song H, Williams BJ, et al (2019) Mitochondrial NIX promotes tumor survival in the hypoxic niche of glioblastoma. Cancer Res canres.0198.0201. https://doi.org/10.1158/0008-5472.can-19-0198

  118. Kaffes I, Szulzewsky F, Chen Z, Herting CJ, Gabanic B, Velázquez Vega JE et al (2019) Human mesenchymal glioblastomas are characterized by an increased immune cell presence compared to proneural and classical tumors. Oncoimmunology. https://doi.org/10.1080/2162402x.2019.1655360

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kawai N, Lin W, Cao W-D, Ogawa D, Miyake K, Haba R et al (2014) Correlation between 18F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging 41:1870–1878. https://doi.org/10.1007/s00259-014-2776-9

    Article  CAS  PubMed  Google Scholar 

  120. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of alzheimer’s disease. Cell 169:1276-1290e1217. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  121. Kim S, Takahashi H, Lin W-W, Descargues P, Grivennikov S, Kim Y et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106. https://doi.org/10.1038/nature07623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kitabayashi T, Dong Y, Furuta T, Sabit H, Jiapaer S, Zhang J et al (2019) Identification of GSK3β inhibitor kenpaullone as a temozolomide enhancer against glioblastoma. Sci Rep. https://doi.org/10.1038/s41598-019-46454-8

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kitange GJ, Carlson BL, Schroeder MA, Decker PA, Morlan BW, Wu W et al (2010) Expression of CD74 in high grade gliomas: a potential role in temozolomide resistance. J Neurooncol 100:177–186. https://doi.org/10.1007/s11060-010-0186-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kohm AP, Carpentier PA, Anger HA, Miller SD (2002) Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169:4712–4716. https://doi.org/10.4049/jimmunol.169.9.4712

    Article  CAS  PubMed  Google Scholar 

  125. Kono H, Karmarkar D, Iwakura Y, Rock KL (2010) Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death. J Immunol 184:4470–4478. https://doi.org/10.4049/jimmunol.0902485

    Article  CAS  PubMed  Google Scholar 

  126. Krenzlin H, Lorenz V, Alessandri B (2017) The involvement of thrombin in the pathogenesis of glioblastoma. J Neurosci Res 95:2080–2085. https://doi.org/10.1002/jnr.24049

    Article  CAS  PubMed  Google Scholar 

  127. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Can Res 63:1138–1143

    CAS  Google Scholar 

  128. Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9:145–165. https://doi.org/10.1007/s11302-012-9349-9

    Article  CAS  PubMed  Google Scholar 

  129. Kvisten M, Mikkelsen VE, Stensjoen AL, Solheim O, Van Der Want J, Torp SH (2019) Microglia and macrophages in human glioblastomas: a morphological and immunohistochemical study. Mol Clin Oncol 11:31–36. https://doi.org/10.3892/mco.2019.1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Landry AP, Balas M, Alli S, Spears J, Zador Z (2020) Distinct regional ontogeny and activation of tumor associated macrophages in human glioblastoma. Sci Rep. https://doi.org/10.1038/s41598-020-76657-3

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 29:1203–1217. https://doi.org/10.1101/gad.261982.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee J, Jo DH, Kim JH, Cho CS, Han JE, Kim Y et al (2019) Development of a patient-derived xenograft model of glioblastoma via intravitreal injection in mice. Exp Mol Med 51:1–9. https://doi.org/10.1038/s12276-019-0241-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li J, Kaneda MM, Ma J, Li M, Shepard RM, Patel K et al (2021) PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response. Proc Natl Acad Sci 118:e2009290118. https://doi.org/10.1073/pnas.2009290118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513. https://doi.org/10.1016/j.ccr.2009.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li Z, Wang J, Zhang X, Liu P, Zhang X, Wang J et al (2020) Proinflammatory S100A8 induces PD-L1 expression in macrophages, mediating tumor immune escape. J Immunol. https://doi.org/10.4049/jimmunol.1900753

    Article  PubMed  PubMed Central  Google Scholar 

  136. Li Z, Zhang J, Zheng H, Li C, Xiong J, Wang W et al (2019) Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res 38:380. https://doi.org/10.1186/s13046-019-1371-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liao Z, She C, Ma L, Sun Z, Li P, Zhang X et al (2019) KDELR2 promotes glioblastoma tumorigenesis targeted by HIF1a via mTOR signaling pathway. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-019-00715-2

    Article  PubMed  Google Scholar 

  138. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192–199. https://doi.org/10.1038/nm.1927

    Article  CAS  PubMed  Google Scholar 

  140. Lisi L, Ciotti GMP, Chiavari M, Pizzoferrato M, Mangiola A, Kalinin S et al (2019) Phospho-mTOR expression in human glioblastoma microglia-macrophage cells. Neurochem Int 129:104485. https://doi.org/10.1016/j.neuint.2019.104485

    Article  CAS  PubMed  Google Scholar 

  141. Liu S, Tang Y, Yuan X, Yuan D, Liu J, Li B et al (2018) Inhibition of Rb and mTOR signaling associates with synergistic anticancer effect of palbociclib and erlotinib in glioblastoma cells. Investig New Drugs. https://doi.org/10.1007/s10637-018-0575-z

    Article  Google Scholar 

  142. Liu T, Ma W, Xu H, Huang M, Zhang D, He Z et al (2018) PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat Commun. https://doi.org/10.1038/s41467-018-05982-z

    Article  PubMed  PubMed Central  Google Scholar 

  143. Liu X, Chen J, Li W, Hang C, Dai Y (2020) Inhibition of casein kinase II by CX-4945, but not yes-associated protein (YAP) by verteporfin, enhances the antitumor efficacy of temozolomide in glioblastoma. Transl Oncol 13:70–78. https://doi.org/10.1016/j.tranon.2019.09.006

    Article  CAS  PubMed  Google Scholar 

  144. Lo Dico A, Valtorta S, Ottobrini L, Moresco RM (2019) Role of metformin and AKT axis modulation in the reversion of hypoxia induced TMZ-resistance in glioma cells. Front Oncol. https://doi.org/10.3389/fonc.2019.00463

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R et al (2011) Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res 17:4296–4308. https://doi.org/10.1158/1078-0432.Ccr-10-2557

    Article  CAS  PubMed  Google Scholar 

  146. Lowe KL, Navarro-Núñez L, Bénézech C, Nayar S, Kingston BL, Nieswandt B et al (2015) The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol 45:2484–2493. https://doi.org/10.1002/eji.201445314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lucero R, Zappulli V, Sammarco A, Murillo OD, Cheah PS, Srinivasan S et al (2020) Glioma-derived miRNA-containing extracellular vesicles induce angiogenesis by reprogramming brain endothelial cells. Cell Rep 7:2065–2074. https://doi.org/10.1016/j.celrep.2020.01.073

    Article  CAS  Google Scholar 

  148. Luo W, Yan D, Song Z, Zhu X, Liu X, Li X (2019) miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/β-catenin signaling via targeting SOX2. Life Sci 226:98–106. https://doi.org/10.1016/j.lfs.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  149. Ma YY, He XJ, Wang HJ, Xia YJ, Wang SL, Ye ZY et al (2011) Interaction of coagulation factors and tumor-associated macrophages mediates migration and invasion of gastric cancer. Cancer Sci 102:336–342. https://doi.org/10.1111/j.1349-7006.2010.01795.x

    Article  CAS  PubMed  Google Scholar 

  150. Magnus N, D’Asti E, Garnier D, Meehan B, Rak J (2013) Brain neoplasms and coagulation. Semin Thromb Hemost 39:881–895. https://doi.org/10.1055/s-0033-1357483

    Article  CAS  PubMed  Google Scholar 

  151. Majc B, Novak M, Jerala NK, Jewett A, Breznik B (2021) Immunotherapy of glioblastoma: current strategies and challenges in tumor model development. Cells 10:265. https://doi.org/10.3390/cells10020265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, Rodríguez-Enríquez S, Moreno-Sánchez R (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9:1084–1101. https://doi.org/10.2174/138955709788922610

    Article  PubMed  Google Scholar 

  153. Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S et al (2019) Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-019-0803-6

    Article  PubMed  PubMed Central  Google Scholar 

  154. Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M et al (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21:366–380. https://doi.org/10.1016/j.celrep.2017.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. McCoy MG, Nyanyo D, Hung CK, Goerger JP, Zipfel W, Williams RM et al (2019) Endothelial cells promote 3D invasion of GBM by IL-8-dependent induction of cancer stem cell properties. Sci Rep. https://doi.org/10.1038/s41598-019-45535-y

    Article  PubMed  PubMed Central  Google Scholar 

  156. McKelvey KJ, Hudson AL, Prasanna Kumar R, Wilmott JS, Attrill GH, Long GV et al (2020) Temporal and spatial modulation of the tumor and systemic immune response in the murine Gl261 glioma model. PLoS ONE 15:e0226444. https://doi.org/10.1371/journal.pone.0226444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Miroshnikova YA, Mouw JK, Barnes JM, Pickup MW, Kim Y, Lobo K et al (2016) Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol 18:1336–1345. https://doi.org/10.1038/ncb3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A et al (2019) HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of Tregs in glioblastoma. Cell Rep 27:226-237.e224. https://doi.org/10.1016/j.celrep.2019.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H (2013) Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery 72:1031–1039. https://doi.org/10.1227/NEU.0b013e31828cf945

    Article  PubMed  Google Scholar 

  160. Mohanam S, Sawaya R, McCutcheon I, Ali-Osman F, Boyd D, Rao JS (1993) Modulation of in vitro invasion of human glioblastoma cells by urokinase-type plasminogen activator receptor antibody. Can Res 53:4143–4147

    CAS  Google Scholar 

  161. Mooney J, Bernstock JD, Ilyas A, Ibrahim A, Yamashita D, Markert JM et al (2019) Current approaches and challenges in the molecular therapeutic targeting of glioblastoma. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.05.205

    Article  PubMed  Google Scholar 

  162. Mori T, Abe T, Wakabayashi Y, Hikawa T, Matsuo K, Yamada Y et al (2000) Up-regulation of urokinase-type plasminogen activator and its receptor correlates with enhanced invasion activity of human glioma cells mediated by transforming growth factor-alpha or basic fibroblast growth factor. J Neurooncol 46:115–123. https://doi.org/10.1023/a:1006339717748

    Article  CAS  PubMed  Google Scholar 

  163. Moussion C, Ortega N, Girard J-P (2008) The IL-1-like cytokine IL-33 Is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS ONE 3:e3331. https://doi.org/10.1371/journal.pone.0003331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Musah-Eroje A, Watson S (2019) Adaptive changes of glioblastoma cells following exposure to hypoxic (1% oxygen) tumour microenvironment. Int J Mol Sci 20:2091. https://doi.org/10.3390/ijms20092091

    Article  CAS  PubMed Central  Google Scholar 

  165. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. https://doi.org/10.1016/j.cell.2019.06.024

    Article  PubMed  PubMed Central  Google Scholar 

  166. Niechi I, Uribe-Ojeda A, Erices J, Torres Á, Uribe D, Rocha J et al (2019) Adenosine depletion as a new strategy to decrease glioblastoma stem-like cells aggressiveness. Cells. https://doi.org/10.3390/cells8111353

    Article  PubMed  PubMed Central  Google Scholar 

  167. Nikolova T, Christmann M, Kaina B (2009) FEN1 is overexpressed in testis, lung and brain tumors. Anticancer Res 29:2453–2459

    CAS  PubMed  Google Scholar 

  168. Nimmerjahn A (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. https://doi.org/10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  169. Ochocka N, Segit P, Walentynowicz KA, Wojnicki K, Cyranowski S, Swatler J et al (2021) Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat Commun. https://doi.org/10.1038/s41467-021-21407-w

    Article  PubMed  PubMed Central  Google Scholar 

  170. Olar A, Aldape KD (2014) Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 232:165–177. https://doi.org/10.1002/path.4282

    Article  PubMed  PubMed Central  Google Scholar 

  171. Olmez I, Zhang Y, Manigat L, Benamar M, Brenneman B, Nakano I, et al (2018) Combined c-Met/Trk inhibition overcomes resistance to CDK4/6 inhibitors in glioblastoma. Cancer Res canres.3124.3201. https://doi.org/10.1158/0008-5472.can-17-3124

  172. Orzan F, Pagani F, Cominelli M, Triggiani L, Calza S, De Bacco F et al (2020) A simplified integrated molecular and immunohistochemistry-based algorithm allows high accuracy prediction of glioblastoma transcriptional subtypes. Lab Investig. https://doi.org/10.1038/s41374-020-0437-0

    Article  PubMed  Google Scholar 

  173. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1–iv86. https://doi.org/10.1093/neuonc/noy131

    Article  PubMed  PubMed Central  Google Scholar 

  174. Otvos B, Alban TJ, Grabowski MM, Bayik D, Mulkearns-Hubert EE, Radivoyevitch T et al (2021) Preclinical modeling of surgery and steroid therapy for glioblastoma reveals changes in immunophenotype that are associated with tumor growth and outcome. Clin Cancer Res 27:2038–2049. https://doi.org/10.1158/1078-0432.CCR-20-3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Otvos B, Silver DJ, Mulkearns-Hubert EE, Alvarado AG, Turaga SM, Sorensen MD et al (2016) Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells 34:2026–2039. https://doi.org/10.1002/stem.2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ozawa Y, Yamamuro S, Sano E, Tatsuoka J, Hanashima Y, Yoshimura S et al (2020) Indoleamine 2,3-dioxygenase 1 is highly expressed in glioma stem cells. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2020.01.148

    Article  PubMed  Google Scholar 

  177. Pacioni S, D’Alessandris QG, Buccarelli M, Boe A, Martini M, Larocca LM et al (2019) Brain invasion along perivascular spaces by glioma cells: relationship with blood-brain barrier. Cancers 12:E18. https://doi.org/10.3390/cancers12010018

    Article  CAS  PubMed  Google Scholar 

  178. Pan YB, Wang S, Yang B, Jiang Z, Lenahan C, Wang J et al (2020) Transcriptome analyses reveal molecular mechanisms underlying phenotypic differences among transcriptional subtypes of glioblastoma. J Cell Mol Med 24:3901–3916. https://doi.org/10.1111/jcmm.14976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Park SJ, Kim H, Kim SH, Joe E-h, Jou I (2019) Epigenetic downregulation of STAT6 increases HIF-1α expression via mTOR/S6K/S6, leading to enhanced hypoxic viability of glioma cells. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-019-0798-z

    Article  PubMed  PubMed Central  Google Scholar 

  180. Peterziel H, Muller J, Danner A, Barbus S, Liu HK, Radlwimmer B et al (2012) Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation. Neuro Oncol 14:426–439. https://doi.org/10.1093/neuonc/nos055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173. https://doi.org/10.1016/j.ccr.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  182. Pietrobono D, Giacomelli C, Marchetti L, Martini C, Trincavelli ML (2020) High adenosine extracellular levels induce glioblastoma aggressive traits modulating the mesenchymal stromal cell secretome. Int J Mol Sci 21:7706. https://doi.org/10.3390/ijms21207706

    Article  CAS  PubMed Central  Google Scholar 

  183. Pinton L, Masetto E, Vettore M, Solito S, Magri S, D’Andolfi M et al (2019) The immune suppressive microenvironment of human gliomas depends on the accumulation of bone marrow-derived macrophages in the center of the lesion. J Immunother Cancer. https://doi.org/10.1186/s40425-019-0536-x

    Article  PubMed  PubMed Central  Google Scholar 

  184. Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S et al (2016) Corticosteroids compromise survival in glioblastoma. Brain 139:1458–1471. https://doi.org/10.1093/brain/aww046

    Article  PubMed  PubMed Central  Google Scholar 

  185. Poh AR, Ernst M (2018) Targeting macrophages in cancer: from bench to bedside. Front Oncol. https://doi.org/10.3389/fonc.2018.00049

    Article  PubMed  PubMed Central  Google Scholar 

  186. Pore N, Liu S, Haas-Kogan DA, O’Rourke DM, Maity A (2003) PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Can Res 63:236–241

    CAS  Google Scholar 

  187. Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH et al (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res 17:1603–1615. https://doi.org/10.1158/1078-0432.ccr-10-2563

    Article  CAS  PubMed  Google Scholar 

  188. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272. https://doi.org/10.1038/nm.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Qiu W, Song S, Chen W, Zhang J, Yang H, Chen Y (2019) Hypoxia-induced EPHB2 promotes invasive potential of glioblastoma. Int J Clin Exp Pathol 12:539–548

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT et al (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352:aad3018. https://doi.org/10.1126/science.aad3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31:326–341. https://doi.org/10.1016/j.ccell.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Quezada C, Garrido W, Oyarzún C, Fernández K, Segura R, Melo R et al (2013) 5′-ectonucleotidase mediates multiple-drug resistance in glioblastoma multiforme cells. J Cell Physiol 228:602–608. https://doi.org/10.1002/jcp.24168

    Article  CAS  PubMed  Google Scholar 

  193. Quintana FJ, Cohen IR (2005) Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 175:2777–2782. https://doi.org/10.4049/jimmunol.175.5.2777

    Article  CAS  PubMed  Google Scholar 

  194. Rao G, Latha K, Ott M, Sabbagh A, Marisetty A, Ling X et al (2020) Anti–PD-1 induces M1 polarization in the glioma microenvironment and exerts therapeutic efficacy in the absence of CD8 cytotoxic T cells. Clin Cancer Res 26:4699–4712. https://doi.org/10.1158/1078-0432.ccr-19-4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rayes J, Lax S, Wichaiyo S, Watson SK, Di Y, Lombard S et al (2017) The podoplanin-CLEC-2 axis inhibits inflammation in sepsis. Nat Commun. https://doi.org/10.1038/s41467-017-02402-6

    Article  PubMed  PubMed Central  Google Scholar 

  196. Reardon DA, Lassman AB, Schiff D, Yunus SA, Gerstner ER, Cloughesy TF et al (2018) Phase 2 and biomarker study of trebananib, an angiopoietin-blocking peptibody, with and without bevacizumab for patients with recurrent glioblastoma. Cancer 124:1438–1448. https://doi.org/10.1002/cncr.31172

    Article  CAS  PubMed  Google Scholar 

  197. Richards CH, Mohammed Z, Qayyum T, Horgan PG, McMillan DC (2011) The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review. Future Oncol 7:1223–1235. https://doi.org/10.2217/fon.11.99

    Article  CAS  PubMed  Google Scholar 

  198. Richards RI, Robertson SA, O’Keefe LV, Fornarino D, Scott A, Lardelli M et al (2016) The enemy within: innate surveillance-mediated cell death, the common mechanism of neurodegenerative disease. Front Neurosci 10:193. https://doi.org/10.3389/fnins.2016.00193

    Article  PubMed  PubMed Central  Google Scholar 

  199. Riedl J, Preusser M, Nazari PMS, Posch F, Panzer S, Marosi C et al (2017) Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood 129:1831–1839. https://doi.org/10.1182/blood-2016-06-720714

    Article  CAS  PubMed  Google Scholar 

  200. Roedig H, Nastase MV, Wygrecka M, Schaefer L (2019) Breaking down chronic inflammatory diseases: the role of biglycan in promoting a switch between inflammation and autophagy. FEBS J 286:2965–2979. https://doi.org/10.1111/febs.14791

    Article  CAS  PubMed  Google Scholar 

  201. Roh JS, Sohn DH (2018) Damage-associated molecular patterns in inflammatory diseases. Immune Netw 18:e27. https://doi.org/10.4110/in.2018.18.e27

    Article  PubMed  PubMed Central  Google Scholar 

  202. Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539. https://doi.org/10.1097/00005072-200606000-00001

    Article  PubMed  Google Scholar 

  203. Rong Y, Hu F, Huang R, Mackman N, Horowitz JM, Jensen RL et al (2006) Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1-independent mechanisms. Can Res 66:7067–7074. https://doi.org/10.1158/0008-5472.can-06-0346

    Article  CAS  Google Scholar 

  204. Rong Y, Post DE, Pieper RO, Durden DL, Van Meir EG, Brat DJ (2005) PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Can Res 65:1406–1413. https://doi.org/10.1158/0008-5472.can-04-3376

    Article  CAS  Google Scholar 

  205. Rose M, Duhamel M, Aboulouard S, Kobeissy F, Le Rhun E, Desmons A et al (2020) The role of a proprotein convertase inhibitor in reactivation of tumor-associated macrophages and inhibition of glioma growth. Mol Therapy Oncolytics 17:31–46. https://doi.org/10.1016/j.omto.2020.03.005

    Article  CAS  Google Scholar 

  206. Ross JL, Chen Z, Herting CJ, Grabovska Y, Szulzewsky F, Puigdelloses M et al (2020) Platelet-derived growth factor beta is a potent inflammatory driver in paediatric high-grade glioma. Brain. https://doi.org/10.1093/brain/awaa382

    Article  PubMed  PubMed Central  Google Scholar 

  207. Ross JL, Cooper LAD, Kong J, Gutman D, Williams M, Tucker-Burden C et al (2017) 5-Aminolevulinic acid guided sampling of glioblastoma microenvironments identifies pro-survival signaling at infiltrative margins. Sci Rep. https://doi.org/10.1038/s41598-017-15849-w

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ruf W (2012) Tissue factor and cancer. Thromb Res 130:S84–S87. https://doi.org/10.1016/j.thromres.2012.08.285

    Article  PubMed  Google Scholar 

  209. Ruf W, Disse J, Carneiro-Lobo TC, Yokota N, Schaffner F (2011) Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost 9:306–315. https://doi.org/10.1111/j.1538-7836.2011.04318.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ruf W, Rothmeier AS, Graf C (2016) Targeting clotting proteins in cancer therapy—progress and challenges. Thromb Res 140:S1–S7. https://doi.org/10.1016/s0049-3848(16)30090-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sabelstrom H, Petri R, Shchors K, Jandial R, Schmidt C, Sacheva R et al (2019) Driving neuronal differentiation through reversal of an ERK1/2-miR-124-SOX9 axis abrogates glioblastoma aggressiveness. Cell Rep 28:2064–2079. https://doi.org/10.1016/j.celrep.2019.07.071

    Article  CAS  PubMed  Google Scholar 

  212. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195. https://doi.org/10.1038/nature00858

    Article  CAS  PubMed  Google Scholar 

  213. Schaefer L, Babelova A, Kiss E, Hausser H-J, Baliova M, Krzyzankova M et al (2005) The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J Clin Investig 115:2223–2233. https://doi.org/10.1172/jci23755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR (2006) Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 177:1272–1281. https://doi.org/10.4049/jimmunol.177.2.1272

    Article  CAS  PubMed  Google Scholar 

  215. Schweickert PG, Yang Y, White EE, Cresswell GM, Elzey BD, Ratliff TL et al (2021) Thrombin-PAR1 signaling in pancreatic cancer promotes an immunosuppressive microenvironment. J Thromb Haemost 19:161–172. https://doi.org/10.1111/jth.15115

    Article  PubMed  Google Scholar 

  216. Scott IC, Majithiya JB, Sanden C, Thornton P, Sanders PN, Moore T et al (2018) Interleukin-33 is activated by allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity during epithelial damage. Sci Rep. https://doi.org/10.1038/s41598-018-21589-2

    Article  PubMed  PubMed Central  Google Scholar 

  217. Seidel S, Garvalov BK, Wirta V, Von Stechow L, Schänzer A, Meletis K et al (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α. Brain 133:983–995. https://doi.org/10.1093/brain/awq042

    Article  PubMed  Google Scholar 

  218. Seo Y-S, Ko IO, Park H, Jeong YJ, Park J-A, Kim KS et al (2019) Radiation-induced changes in tumor vessels and microenvironment contribute to therapeutic resistance in glioblastoma. Front Oncol. https://doi.org/10.3389/fonc.2019.01259

    Article  PubMed  PubMed Central  Google Scholar 

  219. Sharma I, Singh A, Siraj F, Saxena S (2018) IL-8/CXCR1/2 signalling promotes tumor cell proliferation, invasion and vascular mimicry in glioblastoma. J Biomed Sci 25:62. https://doi.org/10.1186/s12929-018-0464-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Shlomovitz I, Erlich Z, Speir M, Zargarian S, Baram N, Engler M et al (2019) Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model. FEBS J 286:507–522. https://doi.org/10.1111/febs.14738

    Article  CAS  PubMed  Google Scholar 

  221. Silva EJ, Argyris P, Zou X, Ross KF, Herzberg MC (2014) S100A8/A9 regulates MMP-2 expression and invasion and migration by carcinoma cells. Int J Biochem Cell Biol 55:279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388. https://doi.org/10.1146/annurev.immunol.021908.132603

    Article  CAS  PubMed  Google Scholar 

  223. Skaga E, Kulesskiy E, Fayzullin A, Sandberg CJ, Potdar S, Kyttälä A et al (2019) Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma. BMC Cancer. https://doi.org/10.1186/s12885-019-5861-4

    Article  PubMed  PubMed Central  Google Scholar 

  224. Snyder B, Shell B, Cunningham JT, Cunningham RL (2017) Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration. Physiol Rep. https://doi.org/10.14814/phy2.13258

    Article  PubMed  PubMed Central  Google Scholar 

  225. Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H et al (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 108:4274–4280. https://doi.org/10.1073/pnas.1016030108

    Article  PubMed  PubMed Central  Google Scholar 

  226. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. 28. Oncogene 28:3949–3959. https://doi.org/10.1038/onc.2009.252

    Article  CAS  PubMed  Google Scholar 

  227. Sorelle ED, Yecies DW, Liba O, Bennett FC, Graef CM, Dutta R et al (2019) Spatiotemporal tracking of brain-tumor-associated myeloid cells in vivo through optical coherence tomography with plasmonic labeling and speckle modulation. ACS Nano 13:7985–7995. https://doi.org/10.1021/acsnano.9b02656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG et al (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F]Fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14:2623–2630. https://doi.org/10.1158/1078-0432.ccr-07-4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Srikrishna G (2012) S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun 4:31–40. https://doi.org/10.1159/000330095

    Article  CAS  PubMed  Google Scholar 

  230. Stichel D, Ebrahimi A, Reuss D, Schrimpf D, Ono T, Shirahata M et al (2018) Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol 136:793–803. https://doi.org/10.1007/s00401-018-1905-0

    Article  PubMed  Google Scholar 

  231. Sun C, Dai X, Zhao D, Wang H, Rong X, Huang Q et al (2019) Mesenchymal stem cells promote glioma neovascularization in vivo by fusing with cancer stem cells. BMC Cancer. https://doi.org/10.1186/s12885-019-6460-0

    Article  PubMed  PubMed Central  Google Scholar 

  232. Sun S, He M, Wang Y, Yang H, Al-Abed Y (2018) Folic acid derived-P5779 mimetics regulate DAMP-mediated inflammation through disruption of HMGB1:TLR4:MD-2 axes. PLoS ONE 13:e0193028. https://doi.org/10.1371/journal.pone.0193028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Sun X, Liu X, Xia M, Shao Y, Zhang XD (2019) Multicellular gene network analysis identifies a macrophage-related gene signature predictive of therapeutic response and prognosis of gliomas. J Transl Med. https://doi.org/10.1186/s12967-019-1908-1

    Article  PubMed  PubMed Central  Google Scholar 

  234. Suzuki-Inoue K (2019) Platelets and cancer-associated thrombosis: focusing on the platelet activation receptor CLEC-2 and podoplanin. Blood 134:1912–1918

    Article  PubMed  Google Scholar 

  235. Tafani M, Di Vito M, Frati A, Pellegrini L, De Santis E, Sette G et al (2011) Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. J Neuroinflamm 8:32. https://doi.org/10.1186/1742-2094-8-32

    Article  CAS  Google Scholar 

  236. Talasila KM, Røsland GV, Hagland HR, Eskilsson E, Flønes IH, Fritah S et al (2016) The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro Oncol. https://doi.org/10.1093/neuonc/now175

    Article  PubMed  PubMed Central  Google Scholar 

  237. Tamura R, Miyoshi H, Sampetrean O, Shinozaki M, Morimoto Y, Iwasawa C et al (2019) Visualization of spatiotemporal dynamics of human glioma stem cell invasion. Mol Brain. https://doi.org/10.1186/s13041-019-0462-3

    Article  PubMed  PubMed Central  Google Scholar 

  238. Tamura R, Tanaka T, Akasaki Y, Murayama Y, Yoshida K, Sasaki H (2020) The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol. https://doi.org/10.1007/s12032-019-1329-2

    Article  Google Scholar 

  239. Tawil N, Bassawon R, Rak J (2019) Oncogenes and clotting factors: the emerging role of tumor cell genome and epigenome in cancer-associated thrombosis. Semin Thromb Hemost 45:373–384. https://doi.org/10.1055/s-0039-1687891

    Article  CAS  PubMed  Google Scholar 

  240. Taylor KR, Yamasaki K, Radek KA, Nardo AD, Goodarzi H, Golenbock D et al (2007) Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on toll-like receptor 4, CD44, and MD-2. J Biol Chem 282:18265–18275. https://doi.org/10.1074/jbc.m606352200

    Article  CAS  PubMed  Google Scholar 

  241. Tehrani M, Friedman TM, Olson JJ, Brat DJ (2007) Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol 18:164–171. https://doi.org/10.1111/j.1750-3639.2007.00108.x

    Article  PubMed  PubMed Central  Google Scholar 

  242. Terraneo L, Samaja M (2017) Comparative response of brain to chronic hypoxia and hyperoxia. Int J Mol Sci 18:1914. https://doi.org/10.3390/ijms18091914

    Article  CAS  PubMed Central  Google Scholar 

  243. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H et al (2018) The immune landscape of cancer. Immunity 48:812-830.e814. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Tian J, Avalos AM, Mao S-Y, Chen B, Senthil K, Wu H et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496. https://doi.org/10.1038/ni1457

    Article  CAS  PubMed  Google Scholar 

  245. Tirosh I, Suva ML (2020) Tackling the many facets of glioblastoma heterogeneity. Cell Stem Cell 26:303–304. https://doi.org/10.1016/j.stem.2020.02.005

    Article  CAS  PubMed  Google Scholar 

  246. Trousseau A (1865) Phlegmatia alba dolens. Clinique Médicale de L’hôtel-dieu de Paris 2nd edn. J.-B. Baillière et fils, City, pp 654–712

  247. Tu Y, Xie P, Du X, Fan L, Bao Z, Sun G et al (2019) S100A11 functions as novel oncogene in glioblastoma via S100A11/ANXA2/NF-κB positive feedback loop. J Cell Mol Med. https://doi.org/10.1111/jcmm.14574

    Article  PubMed  PubMed Central  Google Scholar 

  248. Unruh D, Horbinski C (2020) Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol. https://doi.org/10.1186/s13045-020-00932-z

    Article  PubMed  PubMed Central  Google Scholar 

  249. Unruh D, Mirkov S, Wray B, Drumm M, Lamano J, Li YD et al (2019) Methylation-dependent tissue factor suppression contributes to the reduced malignancy of IDH1-mutant gliomas. Clin Cancer Res 25:747–759. https://doi.org/10.1158/1078-0432.ccr-18-1222

    Article  CAS  PubMed  Google Scholar 

  250. Unruh D, Schwarze SR, Khoury L, Thomas C, Wu M, Chen L et al (2016) Mutant IDH1 and thrombosis in gliomas. Acta Neuropathol 132:917–930. https://doi.org/10.1007/s00401-016-1620-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Uribe D, Torres Á, Rocha JD, Niechi I, Oyarzún C, Sobrevia L et al (2017) Multidrug resistance in glioblastoma stem-like cells: role of the hypoxic microenvironment and adenosine signaling. Doi. https://doi.org/10.1016/j.mam.2017.01.009

    Article  Google Scholar 

  252. Vabulas RM (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339. https://doi.org/10.1074/jbc.m103217200

    Article  CAS  PubMed  Google Scholar 

  253. Velásquez C, Mansouri S, Gutiérrez O, Mamatjan Y, Mollinedo P, Karimi S et al (2019) Hypoxia can induce migration of glioblastoma cells through a methylation-dependent control of ODZ1 gene expression. Front Oncol. https://doi.org/10.3389/fonc.2019.01036

    Article  PubMed  PubMed Central  Google Scholar 

  254. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Vincentelli C, Hwang SN, Holder CA, Brat DJ (2012) The use of neuroimaging to guide the histologic diagnosis of central nervous system lesions. Adv Anat Pathol 19:97–107. https://doi.org/10.1097/pap.0b013e318248b747

    Article  PubMed  Google Scholar 

  256. Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B et al (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18:6110–6121. https://doi.org/10.1158/1078-0432.ccr-12-2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Wang P, Yan Q, Liao B, Zhao L, Xiong S, Wang J et al (2020) The HIF1α/HIF2α-miR210-3p network regulates glioblastoma cell proliferation, dedifferentiation and chemoresistance through EGF under hypoxic conditions. Cell Death Dis. https://doi.org/10.1038/s41419-020-03150-0

    Article  PubMed  PubMed Central  Google Scholar 

  258. Wang P, Zhao L, Gong S, Xiong S, Wang J, Zou D et al (2021) HIF1α/HIF2α–Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR–PI3K/AKT signalling pathway with positive feedback under hypoxia. Cell Death Dis. https://doi.org/10.1038/s41419-021-03598-8

    Article  PubMed  PubMed Central  Google Scholar 

  259. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42-56e46. https://doi.org/10.1016/j.ccell.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Wang Z, Shi Y, Ying C, Jiang Y, Hu J (2021) Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene 40:1458–1475. https://doi.org/10.1038/s41388-020-01635-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Wei Q, Singh O, Ekinci C, Gill J, Li M, Mamatjan Y et al (2021) TNFα secreted by glioma associated macrophages promotes endothelial activation and resistance against anti-angiogenic therapy. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-021-01163-0

    Article  PubMed  PubMed Central  Google Scholar 

  262. Weinstein JR, Koerner IP, Möller T (2010) Microglia in ischemic brain injury. Future Neurol 5:227–246. https://doi.org/10.2217/fnl.10.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Wen Y-T, Wu AT, Bamodu OA, Wei L, Lin C-M, Yen Y et al (2019) A novel multi-target small molecule, LCC-09, inhibits stemness and therapy-resistant phenotypes of glioblastoma cells by increasing miR-34a and deregulating the DRD4/Akt/mTOR signaling axis. Cancers. https://doi.org/10.3390/cancers11101442

    Article  PubMed  PubMed Central  Google Scholar 

  264. Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT et al (2020) Versican—a critical extracellular matrix regulator of immunity and inflammation. Front Immunol. https://doi.org/10.3389/fimmu.2020.00512

    Article  PubMed  PubMed Central  Google Scholar 

  265. Wippold FJ 2nd, Lämmle M, Anatelli F, Lennerz J, Perry A (2006) Neuropathology for the neuroradiologist: palisades and pseudopalisades. AJNR Am J Neuroradiol 27:2037–2041

    PubMed  PubMed Central  Google Scholar 

  266. Wojtukiewicz MZ, Mysliwiec M, Matuszewska E, Sulkowski S, Zimnoch L, Politynska B et al (2021) Imbalance in coagulation/fibrinolysis inhibitors resulting in extravascular thrombin generation in gliomas of varying levels of malignancy. Biomolecules 11:663. https://doi.org/10.3390/biom11050663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Won WJ, Deshane JS, Leavenworth JW, Oliva CR, Griguer CE (2019) Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma. Cell Stress 3:47–65. https://doi.org/10.15698/cst2019.02.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Woroniecka KI, Rhodin KE, Chongsathidkiet P, Keith KA, Fecci PE (2018) T-cell dysfunction in glioblastoma: applying a new framework. Clin Cancer Res 24:3792–3802. https://doi.org/10.1158/1078-0432.ccr-18-0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Wu T, Luo Q, Ouyang G (2015) Periostin: a potent chemotactic factor for recruiting tumor-associated macrophage. Protein Cell 6:235–237. https://doi.org/10.1007/s13238-015-0141-9

    Article  PubMed  PubMed Central  Google Scholar 

  270. Xie L, Yang S-H (2015) Interaction of astrocytes and T cells in physiological and pathological conditions. Brain Res 1623:63–73. https://doi.org/10.1016/j.brainres.2015.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Xiong N, Li J, Yuan H, Xu H, Zhao H (2020) Hypoxic cancer-secreted exosomal miR-182-5p promotes glioblastoma angiogenesis by targeting Kruppel-like factor 2 and 4. Mol Cancer Res. https://doi.org/10.1158/1541-7786.mcr-19-0725

    Article  PubMed  Google Scholar 

  272. Xu D, Young J, Song D, Esko JD (2011) Heparan sulfate is essential for high mobility group protein 1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE). J Biol Chem 286:41736–41744. https://doi.org/10.1074/jbc.m111.299685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Xu H-S, Qin X-L, Zong H-L, He X-G, Cao L (2017) Cancer stem cell markers in glioblastoma—an update. Eur Rev Med Pharmacol Sci 21:3207–3211

    PubMed  Google Scholar 

  274. Xu K, Boas DA, Sakadzic S, LaManna JC (2017) Brain tissue PO2 measurement during normoxia and hypoxia using two-photon phosphorescence lifetime microscopy. Adv Exp Med Biol 977:149–153. https://doi.org/10.1007/978-3-319-55231-6_20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Xu L, Xiao H, Xu M, Zhou C, Yi L, Liang H (2011) Glioma-derived T cell immunoglobulin- and mucin domain-containing molecule-4 (TIM4) contributes to tumor tolerance. J Biol Chem 286:36694–36699. https://doi.org/10.1074/jbc.m111.292540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Yamaki T, Shibahra I, Matsuda K-I, Kanemura Y, Konta T, Kanamori M et al (2020) Relationships between recurrence patterns and subventricular zone involvement or CD133 expression in glioblastoma. J Neurooncol 146:489–499. https://doi.org/10.1007/s11060-019-03381-y

    Article  CAS  PubMed  Google Scholar 

  277. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R et al (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549. https://doi.org/10.1084/jem.20132477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Yang I, Tihan T, Han SJ, Wrensch MR, Wiencke J, Sughrue ME et al (2010) CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J Clin Neurosci 17:1381–1385. https://doi.org/10.1016/j.jocn.2010.03.031

    Article  PubMed  PubMed Central  Google Scholar 

  279. Yi L, Xiao H, Xu M, Ye X, Hu J, Li F et al (2011) Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J Neuroimmunol 232:75–82. https://doi.org/10.1016/j.jneuroim.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  280. Yona S, Kim K-W, Wolf Y, Mildner A, Varol D, Breker M et al (2013) fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91. https://doi.org/10.1016/j.immuni.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  281. Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun H-S et al (2020) Induction of programmed necrosis: a novel anti-cancer strategy for natural compounds. Pharmacol Ther 214:107593. https://doi.org/10.1016/j.pharmthera.2020.107593

    Article  CAS  PubMed  Google Scholar 

  282. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ et al (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26:174–179. https://doi.org/10.1097/01.shk.0000225404.51320.82

    Article  CAS  PubMed  Google Scholar 

  283. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618

    Article  CAS  PubMed  Google Scholar 

  284. Zhang B, Chen Y, Shi X, Zhou M, Bao L, Hatanpaa KJ et al (2020) Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cell Mol Life Sci. https://doi.org/10.1007/s00018-020-03483-1

    Article  PubMed  PubMed Central  Google Scholar 

  285. Zhao L, Zhang J, Liu Z, Wang Y, Xuan S, Zhao P (2021) Comprehensive characterization of alternative mRNA splicing events in glioblastoma: implications for prognosis, molecular subtypes, and immune microenvironment remodeling. Front Oncol. https://doi.org/10.3389/fonc.2020.555632

    Article  PubMed  PubMed Central  Google Scholar 

  286. Zheng Z-Q, Chen J-T, Zheng M-C, Yang L-J, Wang J-M, Liu Q-L et al (2020) Nestin +/CD31 + cells in the hypoxic perivascular niche regulate glioblastoma chemoresistance by upregulating JAG1 and DLL4. Neuro Oncol. https://doi.org/10.1093/neuonc/noaa265

    Article  PubMed Central  Google Scholar 

  287. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J et al (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17:170–182. https://doi.org/10.1038/ncb3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (DJB; R01 CA214928, R01 CA247905, P50 CA221747, U01 CA217613 and U01 CA199288) and the Cancer Research Institute Irvington Fellowship (JLR). Illustrations were created by Andrea Charest, MS using Adobe Illustrator in collaboration with the authors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DJB; literature search: SMM; writing—original draft preparation: SMM; writing—revision, review and editing: SMM, JLR, CLO, and DJB.

Corresponding author

Correspondence to Daniel J. Brat.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markwell, S.M., Ross, J.L., Olson, C.L. et al. Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathol 143, 291–310 (2022). https://doi.org/10.1007/s00401-021-02401-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-021-02401-4

Keywords

Navigation